• 제목/요약/키워드: Integral Sliding Mode Controller

검색결과 82건 처리시간 0.03초

비정합 불확실성을 갖는 시스템을 위한 적분 슬라이딩 모드 제어기 설계 (Integral Sliding Mode Controller Design for Unmatched Uncertain Systems)

  • 최한호
    • 제어로봇시스템학회논문지
    • /
    • 제17권7호
    • /
    • pp.625-628
    • /
    • 2011
  • This paper presents an LMI-based method to design an integral sliding mode controller for a class of uncertain systems with unmatched uncertainties. The uncertain system under consideration may have unmatched parameter uncertainties in the state matrix as well as in the input matrix. Using LMIs an existence condition of a sliding surface is derived. And a switching feedback control law is given. Finally, numerical examples are given to show that the proposed method can be better than the existing results for some cases.

가중치를 고려한 슬라이딩 모드 제어기 설계 (Sliding Mode Controller Design Considering Weight)

  • 임동균;서병설
    • 전력전자학회논문지
    • /
    • 제4권3호
    • /
    • pp.223-230
    • /
    • 1999
  • 일반적인 슬라이딩 모드 제어기 동조 방법은 동조 피라미터의 수가 플랜트의 차수에 비례하기 때문에 고차의 프로세스에서는 어렵고, 실용적이지 못하다. Camacho(1996)은 고차의 프로세스를 시간 지연 항이 포함된 1차 프로세스로 모델링한 고정 구조 슬라이딩 모드 제어기 설계 방법을 제안하였다. 그러나 Camacho가 제안한 방법은 시간 지연 항을 1차 Taylor 급수로 근사화하는 과정에서 발생되는 근사 오차에 의해 오버슈트, 정착시간, 명령추종 등에 문제점이 있다. 본 논문에서는 이를 개선하기 위해 가중치를 고려한 새로운 형태의 Taylor 근사 기법과 이를 토대로 새로운 슬라이딩 모드 제어기 설계 방법을 제안하고자 한다.

  • PDF

비정합 불확실성을 갖는 시스템을 위한 적분 슬라이딩 모드 제어기의 LMI 기반 설계 (LMI-based Design of Integral Sliding Mode Controllers for Mismatched Uncertain Systems)

  • 최한호
    • 전기학회논문지
    • /
    • 제59권8호
    • /
    • pp.1441-1443
    • /
    • 2010
  • This paper presents an LMI-based method to design an integral sliding mode controller for for a class of uncertain systems with mismatched unstructured uncertainties. The uncertain system under consideration may have mismatched parameter uncertainties in the state matrix as well as in the input matrix. Using LMIs we derive an existence condition of a sliding surface. And we give a switching feedback control law. Finally, we give a numerical design example in order to show that the proposed method can be better than the existing results.

Chattering Alleviation using Integral Sliding Mode Control (ICCAS 2005)

  • Kim, Tae-Won;Kim, Min-Chan;Park, Seung-Kyu;Ahn, Ho-Gyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1621-1623
    • /
    • 2005
  • The input chattering in the sliding mode control (SMC) is alleviated through a low pass filter. When the low pass filter is added to the original system, the overall system including the low pass filter dynamics can not satisfy the matching condition. So the integral SMC is applied for a main controller. A sliding surfaces are designed carefully to make the overall dynamics same with the nominal control system.

  • PDF

A Full Order Sliding Mode Tracking Controller For A Class of Uncertain Dynamical System

  • Ahmad, M.N.;Nawawi, S.W.;Osman, J.H.S
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1853-1858
    • /
    • 2004
  • This paper presents the development of a full order sliding mode controller for tracking problem of a class of uncertain dynamical system, in particular, the direct drive robot manipulators. By treating the arm as an uncertain system represented by its nominal and bounded parametric uncertainties, a new robust fullorder sliding mode tracking controller is derived such that the actual trajectory tracks the desired trajectory as closely as possible despite the non-linearities and input couplings present in the system. A proportional-integral sliding surface is chosen to ensure the stability of overall dynamics during the entire period i.e. the reaching phase and the sliding phase. Application to a three DOF direct drive robot manipulator is considered.

  • PDF

다중 에이전트 모바일 로봇 대형제어를 위한 유한시간 슬라이딩 모드 제어기 설계 (Finite-Time Sliding Mode Controller Design for Formation Control of Multi-Agent Mobile Robots)

  • 박동주;문정환;한성익
    • 로봇학회논문지
    • /
    • 제12권3호
    • /
    • pp.339-349
    • /
    • 2017
  • In this paper, we present a finite-time sliding mode control (FSMC) with an integral finite-time sliding surface for applying the concept of graph theory to a distributed wheeled mobile robot (WMR) system. The kinematic and dynamic property of the WMR system are considered simultaneously to design a finite-time sliding mode controller. Next, consensus and formation control laws for distributed WMR systems are derived by using the graph theory. The kinematic and dynamic controllers are applied simultaneously to compensate the dynamic effect of the WMR system. Compared to the conventional sliding mode control (SMC), fast convergence is assured and the finite-time performance index is derived using extended Lyapunov function with adaptive law to describe the uncertainty. Numerical simulation results of formation control for WMR systems shows the efficacy of the proposed controller.

Disturbance observer based adaptive sliding mode control for power tracking of PWRs

  • Hui, Jiuwu;Yuan, Jingqi
    • Nuclear Engineering and Technology
    • /
    • 제52권11호
    • /
    • pp.2522-2534
    • /
    • 2020
  • It is well known that the model of nuclear reactors features natural nonlinearity, and variable parameters during power tracking operation. In this paper, a disturbance observer-based adaptive sliding mode control (DOB-ASMC) strategy is proposed for power tracking of the pressurized-water reactor (PWR) in the presence of lumped disturbances. The nuclear reactor model is firstly established based on point-reactor kinetics equations with six delayed neutron groups. Then, a new sliding mode disturbance observer is designed to estimate the lumped disturbance, and its stability is discussed. On the basis of the developed DOB, an adaptive sliding mode control scheme is proposed, which is a combination of backstepping technique and integral sliding mode control approach. In addition, an adaptive law is introduced to enhance the robustness of a PWR with disturbances. The asymptotic stability of the overall control system is verified by Lyapunov stability theory. Simulation results are provided to demonstrate that the proposed DOB-ASMC strategy has better power tracking performance than conventional sliding mode controller and PID control method as well as conventional backstepping controller.

슬라이딩 모드 관측기와 제어기를 이용한 서보시스템의 정밀제어 (Precise Control for Servo Systems Using Sliding Mode Observer and Controller)

  • 한성익;공준희;신대왕;김종식
    • 한국정밀공학회지
    • /
    • 제19권7호
    • /
    • pp.154-162
    • /
    • 2002
  • The effect of nonlinear friction in the low velocity is dominant in precise controlled mechanisms and it is difficult to model. This paper is concerned with the compensation for friction using the variable structure system approach as nonmodel based method. The problem of chattering in the sliding mode controller is suppressed by the implementation of the boundary layer concept. And the estimation for friction using sliding mode observer makes the upper bound of matched uncertainty reduced. Accordingly, the effect of chattering can be more suppressed. And the sliding surface is constructed by adding an integral component to the switching function that is made by using error dynamics. This sliding surface guarantees the good tracking performance. Experimental results for a XY table system show that the proposed method has a good performance especially in the low velocity.

강인한 비례적분 슬라이딩 모드를 이용한 초중량물 로봇의 제어 (Control of Heavy Duty Robot using Robust Proportional Integral Sliding Mode)

  • 고창민;박성훈;이현석;김민찬;박승규;김두형;정광조
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1729_1730
    • /
    • 2009
  • This paper presents comparative experimental results of PI sliding mode control and PI control for a heavy duty robot which can handle an object of 600kg, The gains of the PI control was determined by TAE(Trial and Error) method. This paper presents a novel approach for the decoupling of the states cross-coupling using sliding mode control. The sliding mode control methode is based on the error between reference speeds and the actual speed. The proposed method has the advantages of PI control performance and the sliding mode control robustness. Its first step is to design PI controller, then the sliding mode control input term is added to it. This makes actual implementation of the controller easier. The robot and motion controllers were designed and made by author. The good control performance of the heavy duty robot was obtained by using simple algorithm. This means that the robot was designed very well in control respect.

  • PDF

불확실 선형 시스템을 위한 새로운 개선된 적분 가변구조 제어기 (A New Improved Integral Variable Structure Controller for Uncertain Linear Systems)

  • 이정훈
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제50권4호
    • /
    • pp.177-183
    • /
    • 2001
  • In this paper, a new variable structure controller is designed for the tracker control of uncertain general plants so that the output of plants can controlled to a given arbitrary point in state space. By using the error between the steady state value of the output and the given reference, the sliding surface is defined, in advance, the surface from an initial state to the given reference without any reaching phase. A corresponding control input to satisfy the existence condition of the sliding mode is suggested to control the output on the predefined surface. Therefore the output controlled by the proposed controller is completely robust and identical to that of the sliding surface. Through an example, the usefulness is verified.

  • PDF