• Title/Summary/Keyword: Integral Operator

Search Result 272, Processing Time 0.024 seconds

ON A SUBCLASS OF CERTAIN STARLIKE FUNCTIONS WITH NEGATIVE COEFFICIENTS

  • Kamali, Muhammet;Orhan, Halit
    • Bulletin of the Korean Mathematical Society
    • /
    • v.41 no.1
    • /
    • pp.53-71
    • /
    • 2004
  • A certain subclass $T_{\Omega}(n,\;p,\;\lambda,\;\alpha)$ of starlike functions in the unit disk is introduced. The object of the present paper is to derive several interesting properties of functions belonging to the class $T_{\Omega}(n,\;p,\;\lambda,\;\alpha)$. Coefficient inequalities, distortion theorems and closure theorems of functions belonging to the class $T_{\Omega}(n,\;p,\;\lambda,\;\alpha)$ are determined. Also we obtain radii of convexity for the class $T_{\Omega}(n,\;p,\;\lambda,\;\alpha)$. Furthermore, integral operators and modified Hadamard products of several functions belonging to the class $T_{\Omega}(n,\;p,\;\lambda,\;\alpha)$ are studied here.

A Study on the Theoretical Background of the Multiplication of Rational Numbers as Composition of Operators (두 조작의 합성으로서의 유리수 곱의 이론적 배경 고찰)

  • Choi, Keunbae
    • East Asian mathematical journal
    • /
    • v.33 no.2
    • /
    • pp.199-216
    • /
    • 2017
  • A rational number as operator is eventually that it is considered a mapping. Depending on how selecting domain (the target of operation by rational number) and codomain (including the results of operations by rational number), it is possible to see the rational in two aspects. First, rational numbers can be deal with functions if we choose the target of operation by rational number as a number field containing rationals. On the other hand, if we choose the target of operation by rational number as integral domain $\mathbb{Z}$, then rational numbers can be regarded as partial functions on $\mathbb{Z}$. In this paper, we regard the rational numbers with a view of partial functions, we investigate the theoretical background of the relationship between the multiplication of rational numbers and the composition of rational numbers as operators.

A Study on the development of Gas Engine Controller for Gas Heat Pump (Gas Heat Pump 구동을 위한 가스 엔진 제어기의 개발)

  • 이중현;고국원;고경철;김종형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.618-621
    • /
    • 2004
  • Compressors in Large Multi-room air conditioning system are often driven by gas heat pumps. The advantages of GHP are their high level of heating performance and low cost because they use the LNG fuel to drive engine. We developed engine control system. The developed system controls engine speed based on proportional, integral and derivative (PID) method. This controller is designed to eliminate the need for continuous operator attention on engine revolution control. The control system includes 4 spark coil drivers, fuel drivers and relay drivers to make engine's operating more stable. The experiments of control engine revolution of this system are based on the various load conditions.

  • PDF

ASYMPTOTIC BEHAVIORS OF FUNDAMENTAL SOLUTION AND ITS DERIVATIVES TO FRACTIONAL DIFFUSION-WAVE EQUATIONS

  • Kim, Kyeong-Hun;Lim, Sungbin
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.4
    • /
    • pp.929-967
    • /
    • 2016
  • Let p(t, x) be the fundamental solution to the problem $${\partial}^{\alpha}_tu=-(-{\Delta})^{\beta}u,\;{\alpha}{\in}(0,2),\;{\beta}{\in}(0,{\infty})$$. If ${\alpha},{\beta}{\in}(0,1)$, then the kernel p(t, x) becomes the transition density of a Levy process delayed by an inverse subordinator. In this paper we provide the asymptotic behaviors and sharp upper bounds of p(t, x) and its space and time fractional derivatives $$D^n_x(-{\Delta}_x)^{\gamma}D^{\sigma}_tI^{\delta}_tp(t,x),\;{\forall}n{\in}{\mathbb{Z}}_+,\;{\gamma}{\in}[0,{\beta}],\;{\sigma},{\delta}{\in}[0,{\infty})$$, where $D^n_x$ x is a partial derivative of order n with respect to x, $(-{\Delta}_x)^{\gamma}$ is a fractional Laplace operator and $D^{\sigma}_t$ and $I^{\delta}_t$ are Riemann-Liouville fractional derivative and integral respectively.

STRICT TOPOLOGIES AND OPERATORS ON SPACES OF VECTOR-VALUED CONTINUOUS FUNCTIONS

  • Nowak, Marian
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.1
    • /
    • pp.177-190
    • /
    • 2015
  • Let X be a completely regular Hausdorff space, and E and F be Banach spaces. Let $C_{rc}(X,E)$ be the Banach space of all continuous functions $f:X{\rightarrow}E$ such that f(X) is a relatively compact set in E. We establish an integral representation theorem for bounded linear operators $T:C_{rc}(X,E){\rightarrow}F$. We characterize continuous operators from $C_{rc}(X,E)$, provided with the strict topologies ${\beta}_z(X,E)$ ($z={\sigma},{\tau}$) to F, in terms of their representing operator-valued measures.

CHEYSHEFF-HALLEY-LIKE METHODS IN BANACH SPACES

  • Argyros, Ioannis-K.
    • Journal of applied mathematics & informatics
    • /
    • v.4 no.1
    • /
    • pp.83-108
    • /
    • 1997
  • Chebysheff-Halley methods are probably the best known cubically convergent iterative procedures for solving nonlinear equa-tions. These methods however require an evaluation of the second Frechet-derivative at each step which means a number of function eval-uations proportional to the cube of the dimension of the space. To re-duce the computational cost we replace the second Frechet derivative with a fixed bounded bilinear operator. Using the majorant method and Newton-Kantorovich type hypotheses we provide sufficient condi-tions for the convergence of our method to a locally unique solution of a nonlinear equation in Banach space. Our method is shown to be faster than Newton's method under the same computational cost. Finally we apply our results to solve nonlinear integral equations appearing in radiative transfer in connection with the problem of determination of the angular distribution of the radiant-flux emerging from a plane radiation field.

A SYUDY ON THE OPTIMAL REDUNDANCY RESOLUTION OF A KINEMATICALLY REDUNDANT MANIPULATOR

  • Choi, Byoung-Wook;Won, Jong-Hwa;Chung, Myung-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1150-1155
    • /
    • 1990
  • This paper proposes an optimal redundancy resolution of a kinematically redundant manipulator while considering homotopy classes. The necessary condition derived by minimizing an integral cost criterion results in a second-order differential equation. Also boundary conditions as well as the necessary condition are required to uniquely specify the solution. In the case of a cyclic task, we reformulate the periodic boundary value problem as a two point boundary value problem to find an initial joint velocity as many dimensions as the degrees of redundancy for given initial configuration. Initial conditions which provide desirable solutions are obtained by using the basis of the null projection operator. Finally, we show that the method can be used as a topological lifting method of nonhomotopic extremal solutions and also show the optimal solution with considering the manipulator dynamics.

  • PDF

ENHANCED SEMI-ANALYTIC METHOD FOR SOLVING NONLINEAR DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER

  • JANG, BONGSOO;KIM, HYUNJU
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.23 no.4
    • /
    • pp.283-300
    • /
    • 2019
  • In this paper, we propose a new semi-analytic approach based on the generalized Taylor series for solving nonlinear differential equations of fractional order. Assuming the solution is expanded as the generalized Taylor series, the coefficients of the series can be computed by solving the corresponding recursive relation of the coefficients which is generated by the given problem. This method is called the generalized differential transform method(GDTM). In several literatures the standard GDTM was applied in each sub-domain to obtain an accurate approximation. As noticed in [19], however, a direct application of the GDTM in each sub-domain loses a term of memory which causes an inaccurate approximation. In this work, we derive a new recursive relation of the coefficients that reflects an effect of memory. Several illustrative examples are demonstrated to show the effectiveness of the proposed method. It is shown that the proposed method is robust and accurate for solving nonlinear differential equations of fractional order.

On Certain Subclasses of Starlike p-valent Functions

  • Darwish, Hanan Elsayed;Lashin, Abd-el Monem Yousof;Soileh, Soliman Mohammed
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.3
    • /
    • pp.867-876
    • /
    • 2016
  • The object of the present paper is to investigate the starlikeness of the class of functions $f(z)=z^p+{\sum\limits_{k=n}^{\infty}}a_p+k^{z^{p^{+k}}} (p,n{\in}{\mathbb{N}}=\{1,2,{\ldots}\})$ which are analytic and p-valent in the unit disc U and satisfy the condition $\|(1-{\lambda}({\frac{f(z)}{z^p}})^{\alpha}+{\lambda}{\frac{zf^{\prime}(z)}{pf(z)}}({\frac{f(z)}{z^p}})^{\alpha}-1\|$ < ${\mu}$ (0 < ${\mu}{\leq}1$, ${\lambda}{\geq}0$, ${\alpha}$ > 0, $z{\in}U$). The starlikeness of certain integral operator are also discussed. The results obtained generalize the related works of some authors and some other new results are also obtained.

NOTE ON THE OPERATOR ${\hat{P}}$ ON Lp(∂D)

  • Choi, Ki Seong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.21 no.2
    • /
    • pp.269-278
    • /
    • 2008
  • Let ${\partial}D$ be the boundary of the open unit disk D in the complex plane and $L^p({\partial}D)$ the class of all complex, Lebesgue measurable function f for which $\{\frac{1}{2\pi}{\int}_{-\pi}^{\pi}{\mid}f(\theta){\mid}^pd\theta\}^{1/p}<{\infty}$. Let P be the orthogonal projection from $L^p({\partial}D)$ onto ${\cap}_{n<0}$ ker $a_n$. For $f{\in}L^1({\partial}D)$, ${\hat{f}}(z)=\frac{1}{2\pi}{\int}_{-\pi}^{\pi}P_r(t-\theta)f(\theta)d{\theta}$ is the harmonic extension of f. Let ${\hat{P}}$ be the composition of P with the harmonic extension. In this paper, we will show that if $1, then ${\hat{P}}:L^p({\partial}D){\rightarrow}H^p(D)$ is bounded. In particular, we will show that ${\hat{P}}$ is unbounded on $L^{\infty}({\partial}D)$.

  • PDF