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ABSTRACT

This paper proposes an optimal redundancy resolution of a
kinematically redundant manipulator while considering homotopy
classcs.  The necessary condition derived by minimizing an
integral cost criterion results in a second-order differential equa-
tion. Also boundary conditions as well as the necessary condi-
tion are required to uniquely specify the solution. In the case of
a cyclic task, we reformulate the periodic boundary value prob-
lem as a two point boundary value problem to find an initial joint
velocity as many -dimensions as the degrees of redundancy for
given initial configuration. Initial conditions which provide desir-
able solutions arc obtained by using the basis of the null projec-
tion operator.  Finally, we show that the method can be used as a
topological lifting method of nonhomotopic extremal solutions
and also show the optimal solution with considering the manipu-
lator dynamics.

1. INTRODUCTION

A kincmatically redundant manipulator posscsses more
degrees of freedom (DOF) than that required for performing a
specified task. Redundancy by adding redundant DOF to a mani-
pulator which has a minimum number of DOF required 1o
accomplish given task yields increased dexicrity and versatility
for performing the task due to the infinitc number of inverse
kinematic solutions. Thercfore, the resolution of a redundant
manipulator for reconfiguring the arm without affecting the c¢nd-
cffector position has been discussed in the framework of how to
optimize some performance measure while carrying out 1ts given
task.

Because of these significant advantages, redundant manipu-
lators have been the subject of considerable rescarch, and a
number of control schemes for determining joint trajectories have
been developed by using both global and local optimization
methods. The local redundancy resolution schemes determine
joint trajectorics required to achieve a desired end-cffector trajec-
tory while performing the local optimization of given perfor-
mance criterion [1-6].

The global redundancy resolution schemes, on the other
hand, determine the joint trajectory from a complete description
of the desired end-effector trajectory, which are based on the glo-
bal optimization with an integral cost criterion. Therefore, global
optimization methods are preferable to local optimization
methods. Recently, Configuration Control [7) and a Cartesian
Control (8] are presented. The globally optimal redundancy con-

trol is considered by Nakamura and Hanafusa [9] strictly using
Pontryagin’s maximum principle. And Martin et al. [10] suggest
a reduced order form equivalent to a second-order differential
equation with n variables obtained by solving nccessary condi-
tions for optimality using the Euler-Lagrange equations. For a
cyclic task, they show two differcnt joint trajectories that satisfy
the Euler-Lagrange equations and periodicity. However, they
have been cxhibited numcrical solutions for the periodic boun-
dary value problem.

In this paper, we discuss an optimal redundancy control
problem of a redundant manipulator while considering homotopy
classes. The necessary condition derived by minimizing an
integral cost criterion results in a second-order differcntial equa-
tion with n variables. In order to uniquely specify the optimal
solution, one must consider the boundary conditions as well as
the nccessary condition. For a cyclic task, the boundary condi-
tions become periodic. We refine the periodic boundary condi-
tion problem to a two point boundary problem to find the initial
joint velocity é(to) using the final timc configuration crror
8(r)) — 0(¢p), where to and ¢, are the initial and final time,
respectively.

The problem of a globally optimal redundancy resolution is
solved by using Euler-Lagrange cquations, and we show that the
convergence of numerical search for the solution which satisfies
periodic boundary conditions is very difficult to achicve because
an intcgral cost is very sensitive fo the initial condition. In order
to determine é(to).’ minimal valuc searching must be performed in
a spacc of as many dimensions as the number of degrees of
redundancy for any intcgral cost critcria. Finally, we compare
the optimal solutions obtained using the basis of a null projection
operator of the Jacobian matrix with locally optimal solutions at
the same initial configuration. And we show that the proposed
method can be used as a topological lifting method of nonhomo-
topic extremal solutions through a three DOF planar manipulator
for cyclic tasks with considering the dynamics of the manipula-
tor.

2. NECESSARY CONDITIONS

For a global optimal resolution, one considers an integral
type performance index subject to the kinematic constraints. In
this paper, we first consider the following general integral cost
criterion
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subject to the kinematic constraints
x()=fO0) @)

where 8(t) € R" is the joint vector and x(t) € R™ represents
the position of the end-effector. The problem is to find the joint
trajectory 6(t) which minimizes the performance index (1) among
joint trajectories tracking the desired end-effector trajectory
described as (2). For convenience, throughout this paper, the
argument ¢ is somelimes omitted when no confusion is likely to
arise.

Let’s define the Lagrangian function
L®.O A 1)=p@®, 8, 1)+ A (x ~ £(8)). 3

Using the Lagrangian function, necessary conditions for optimal-
ity of (1) and (2) are given by the Euler-Lagrange equations.
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For a reasonable candidate for p (6, é. t), we choose the follow-
ing function.

p®, 6,0 = %é’me)é +pg(®) ©)

where p is a scalar value and g(@) is some function of
configuration such as the measure of manipulability [3] or a
potential function that gives large values in the neighborhood of
obstacles. If M e R™*" is a configuration-independent diagonal
matrix, we can minimize the weighted nom of joint velocity.
And if one wish to minimize kinetic energy, M (8) must be an
inertial matrix of the dynamic equation of a manipulator.

The necessary conditions (4) and (5) for the performance
index (6) yicld

.. 9 1. .
M —pgo-J"h - S LéME) =0, 7
0+ M0 — pgo—Jh — SL(6'ME) M

¥-J6-J0=0 8)

where gg is the gradient of g (6). Using equations (7) and (8), the
trajectory which satisfies Euler-Lagrange equations is obtained by
eliminating the Lagrangian multiplier as

B=Jy(i-J0)
o 1 ©)
U =T HM MO ~ —(=6"MB) - pgg)
200 "2
where J = MYUTUM™UT)! is a weighted pseudoinverse of J
and /e R"™" is an identity matrix.
In the Lagrangian formulation of manipulator dynamics, the
behavior <+ <vsiem : .amics is described in terms of work and
energy stc .d in the system using the generalized coordinates and

. . ") . .
MO — a(’—e(%eTM 0) yields V. (8]. Therefore, if M (0) in equa-

tion (6) is the inertial matrix, (9) may be represented as
O=Ji(i-J0) —( ~JWIM (V. —pgg.  (10)

Since cquation (10) is a second-order differential equation
with n variables, the boundary conditions of 2n variables are
required to uniquely specify the optimal solution. Conceming
boundary conditions at the initial time, ¢ = z4, 0(rg) and 8(ro)
must satisfy x(ro) = f (B8(rg)) and (o) = J6(ty), respectively.
Since the kinematic constraints must be satisfied to achieve a
task, the sclf-evident boundary conditions are x(rp) = f (0(¢y)
and x(t;) = £ (8(1 ).

If the workspace trajectory is periodic x(r)) = x(ty), we
must seek to joint trajectorics to minimize (1) subject to the
periodic boundary conditions 6(r;) = 8(t¢) and €(t;) = 6(¢y).
These two constraints in conjunction with the Euler-Lagrange
equations then determine the solution. However, it is not easy 1o
obtain a solution according to periodic boundary conditions with
2n unspecified variables of 8(zy) and é(to). Thus, we rcformulate
this problem as a two point boundary problem to find initial joint
velocity é(to) for given initial configuration. The joint velocity is
composed of two parts; onc is the particular solution due to the
task and the other is the homogeneous solution due to the perfor-
mance critecrion [6], therefore we need to find a homogencous
solution of é(to) as many dimensions as the degrees of redun-
dancy which satisfies the periodic boundary conditions.

3. A NUMERICAL SEARCH METHOD

To compare with the examples which were demonstrated of
Martin et al. [10], we set M(0) =7 and g(0) =0 and assume
that the degree of redundancy (n—m) is equal to onc. In this
case, the integrand of the performance index is described by

p®, 6, 1) = %nénl, then (10) becomes
0=J% ~J0) an

where 8 is the solution to minimize the norm of joint velocity
along the path.

To satisfy periodic boundary condition, we present numeri-
cal examples of an optimal redundancy resolution using (11) to
find é(to) for given initial configuration. For rcdundant manipu-
lators (m < n), a general solution for x = J6is

0() = I 2(t) — ol —J* )y (12)

where J* = JT(JT)!, the More-Penrcse gencralized pseudoin-
verse of J, and « is a scalar valuc and y € R" is an arbitrary
vector which represents some desired second criterion for the
manipulator to perform [1-6).

If we denote the null projection operator (I —J*J) as P, P
can be represented by N, wherc N is the basis of the null space
of J [6,10]. Under the assumption of redundancy of one, (12)
can be represented as

6 =J%% — aN(NNTY'NTy. (13)

Since the second term of the right hand side in (13) has the rank



of one, it can be parameterized by a scalar value p as

aN(NTNYINTy = uN, (14)
p=oaNTNYINTy. (15)

Using equations (14) and (15), (13) becomes
B=J% - puN. 16)

In (16), N is any vector whosc column spans the nuli space of J.
Indeed, in order to uniquely parameterize é(t[,) we have to
specifically define N, not any null space vector. We choose N as
the orthonormal vector Z obtained by the theorem of singular
valuc decomposition (SVD) {6,12]. Replace N in (16) with Z,
then (16) becomes

O=J"%~uz an

where |IZ{j = 1.

Therefore, the problem is to find a desircd parameter p
which yields the initial velocity minimizing the pcrformance
index while satisfying periodic boundary conditions. In this case,
a sccond-order differential equation with n variables must be
uniquely specified by 2n initial conditions. So that if we find the
parametcr p satisfying the periodic boundary conditions and
minimizing the performance index, we can obtain the optimal tra-
jectorics over the entire task for given initial configuration 8(z).
In this case, if B(tg) = B(ry) is satisfied, then B(rp) = 6(z;) is
prescrved as long as 9 is governed by (11).

In the resolved rate control for redundant manipulators, y in
(12) can be written by VH (), then the modified control scheme
becomes

0=J"x —a( -J'JYVH®) (18)

where #(0) is an optimization criterion to be minimized subject
to the required end-effector velocity and a is a gain constant. In
this paper, we use (18) iteratively at the initial time to obtain an
initial joint velocity which satisfics periodic boundary conditions.
Therefore, we define H (8) as follows,

H@=%Wm—%m2 (19)

where 8(z,) is the given initial configuration and 6(z,) is the final
joint vector evaluatcd at ¢ =, after forward integration from
t =tgtot =ty of (11). Our optimal problem is to find the ini-
tial joint velocity é(to) which minimizes (19) for given initial
configuration 6(zy). Then the solution fulfills the periodic boun-
dary conditions at t =r,.

The initial joint velocity to be obtained is parameterized by
I described in (17). Since we do not know the joint value at the
final time 6(¢;) in advance from O(ty), we must bave forward
integration of (11). In order to fulfill periodic boundary condi-
tions, we should use e defined as the joint error at the final time
to minimize (19), where ¢ is the gradient of H (8) with respect to
6(r+), such that

e = 0(ty) — 8(zy). 20)
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On cvery iteration, the initial joint velocity may be updated by
the joint error. Since the degree of redundancy is one, the initial
joint velocity on the first iteration is rcpresented as
8(1) = J*x(tg) — MoZ, where f is the initial value of u. And
the initial joint velocity on the kth iteration is updated as follows.

0, (1) = J ¥ (tg) — W Z, 2D

Weri =W + 0Z7e, fork =01, -- 2
where 6 (0 < ¢ < 1) is chosen to minimize (19) and ¢, is the
joint error defined as (20) on the kth iteration.

Once ék(to) is obtained, it must be verified that
H(®;) < H(8,_;) so that ék(to) is indeed an improvement. If the
improvement is not achieved, o must be reduced and a new
ék(t()) found. In the practical sense, the joint vclocity must be
bounded, so the following condition should be satisfied

lim Z7¢, = 0. (23)
k =300

Thus, we terminate itcration if e, resides within some specified
error bound. From (23), we can find the parameterized initial
velocity in terms of the obtained value W, which is

8.(tn) =J"x(t0) ~ s Z. We note that (23) provides two kinds
of solution; onc satisfies periodic boundary conditions, ¢ =0,

and the other arrives at a local point which satisfics (23), but
e # 0. In the latter, e is not zero but is in the null space of Z.
Since Y, in (22) is not updated, the initial joint velocity in (21)
stays at a local minimum point. Thus, we can not obtain the ini-
tial velocity which satisfies periodic boundary conditions. How-
ever, this case can be avoided by appropriate choices of .

4. NUMERICAL EXAMPLES

In this section we discuss some features of optimal resolu-
tion through numerical examples for a threc-link planar redundant
manipulator. Consider the three-link planar manipulator in a hor-
izontal planc shown in Fig. 1. We choose the position of the
end-effector in 2-D space described in Cartesian coordinates,
accordingly x ¢ R%. The degree of redundancy at nonsingular
points is equal to one. In the numerical examples, the cyclic
tasks are described as

Y= [—R cos2me) + C], 24

—R sin(2xt)

where R is the radius of the circle to be carried out and C is the
x—axis position of the center of the circle. The task is to rotate
the circle of R unit radius, centered at (C, 0), in unit time, in a
counterclockwise, thus the initial position is (C—R, 0) and ¢y =0
and ¢t = 1.

8, ) ~‘x(!)

Il
T T T T T T T T 1

Fig. 1. Geometry of a manipulator and Task 1, C = o.u, R = 1.0.



Nonhomotopic Extremal Solutions

Consider the task shown in Fig. 1 denoted as Task 1 where
R =1 and C = 6 units. In this task, we have initial
configuration 0(zy) = (0.7854, -0.8488, -1.3143)" radians. The
measure of manipulability can be expressed as the product of
singular values in the theorem of SVD. For this initial
configuration, the measure of manipulability denoted as M,, is
15.24 and the basis of the null projection operator Z = (0.317,
-0.644, 0.696)" is obtaincd by the theorem of SVD.

First, we consider the nomm of joint error E at the final
3

time, which is defined as £ = ¥, 18;(z;) — 0,(tp)!, after integra-
i=]

tion of (11) according to arbitrary initial velocity for given initial
configuration. Since the volume of velocity ellipsoid is propor-
tional to the measure of manipulability, we may only investigate
the joint error for arbitrary value of p which is bounded by
M, UM,

Fig. 2 shows £ with respect to arbitrary y, and the perfor-
mance index r, the norm of joint velocity, which is scaled down
by 0.02. As shown in Fig. 2, we may find the nonhomotopic
solutions around p's such as 0, 5, 10.5, -5, and -10.5 and so on
which fulfill periodic boundary conditions, but not the globally
optimal solution. Therefore, we find solutions around several
u’s, which are nonhomotopic and optimal in their homotopy
classes, but not necessarily be the globally optimal. It is neces-
sary that £ be cqual to zcro, and r be minimized. So it is
expected from Fig. 2 that the globally optimal trajectory can be
obtained around p = 0, which yiclds the minimum norm solution.

E r
7 350
5.83 b 2915
467 I 2335
35 17
233 1165
117 r 58.5
0 0
1153 -122 916 -61 305 0 305 61 916 122 153 {

Fig. 2. Solid linc £ and dotted line r for Task 1 on ~-M,, Su<M,.

Based on the inspection, the local minimum is searched by
using (21) and (22) around pg = 0 with o = 0.5, then it gives us
that py = —0.0345 yields the optimal point. .Optimal point means
that one can obtain an initial condition 8(zy) which satisfies
optimality conditions for given 8(¢g). If the joint trajectory gen-
crated by such é(to) and B(ty) has lower cost than all other
locally optimal solutions, then it can be the globally optimal solu-
tion. Also if the joint velocity is searched around Yy = S with ©
= 0.5, then another local optimal solution which has p, =
4.88272 will be obtained with the samc initial configuration.

Fig. 3 shows, therefore, two different solutions for given
initial configuration; onec is denoted as solution A when y, =
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-0.0345 and the other is denoted as solution B when By =
4.88272. We note that the homotopy classes are classified by a
paramcter u which parameterizes the initial joint velocity shown
in Fig. 2. In this example, we can find a solution which is the
globally optimal in desirable homotopy class according to the
performance index shown in Fig. 2, which is about -3 < . < 3.

radian
3.15 -

. solution A
234 solution B

-2.36 A

3.15 — T T — Y T T T

Fig. 3. Solutions for Task 1, 6(z¢) = (0.7854, -0.8488, -1.3143)",

Fig. 4 shows 64—-8, phase trajectories in order to compare
two extremal solutions. The degree of redundancy in the three-
link manipulator for accomplishing its given two-dimensional
task is one, then we depict the set of joint values in 6,— 6, phase
plane. The outer closed curve and inner closed curve are two

. . . . !
sets of the inverse kinematic solutions at ¢ = to and t = -
2

)

respectively. Based on Fig. 4, the globally optimal solution is
shorter trajectory than other locally trajectories for the same ini-
tial configuration 6(¢g). Also solution A is only in third qua-
drants, it means that the arm configuration does not changed.
However, since solution B trace out about the inner closed curve
and all quadrants, 'the arm configuration of 0, varies with respect
to 3. Therefore, nonhomotopic extremal solutions can not be
continuously transformed from one to the other.

Task 1

solution A

solution B

-1.57

-2.36 A

-3.15 T — T T T -

315 236 -1.57  -788 0 788 1.57 236 315 6,

Fig. 4. 85— 8, phase trajectories for Task 1.

If we wani to camy out Task 1 at another initial
configuration 6(zg) = (-0.47124, 1.7875, -1.8734)" radians, we
should determine different initial joint velocity as shown in Fig. 3
for satisfying periodic boundary conditions. In this configuration,
Z = (0.4843, -0.5366, -0.6910)" and M,, = 9.85. We note that
the initial value of p depends on the task not on initial
configuration. Therefore the same initial values of gy and ¢ are



used as the case of solution A in Fig. 3. Then we can find the
globally optimal solution at y, = -0.004345 which is shown as
solution C in Fig. 5. And also another extremal solution is
obtained at u; = -6.4765, which started the search around pg =
-6, denoted as solution D in Fig. 5. Solution D is equivalent to
Example 3 in Martin et al [10].

radian
3.15

solution C

2.36

1.57

788

0

-788

-1.57

-2.36

3.15

0 1 2 Kl 4 6 il 8

Fig. 5. Solutions for diffcrent initial configuration in Task 1,
8(zo) = (-0.47124, 1.7875, -1.8734)".

5

Topological Lifting of Extremal Solutions

The solutions from globally optimal resolution of a
kinematically redundant manipulator are nonhomotopic and these
solutions arc classified by p, for given initial configuration.
Therefore. if one wish to distinguish truc optimal solution among
extremal solutions, the joint error at the final time and the perfor-
mance index must be taken into account. Unfortunatcly, the true
optimal trajectory among all feasible trajectories satisfying boun-
dary conditions may be difficult to be found, because there exist
multiple nonhomotopic extremal solutions even for the fixed ini-
tial configuration. In the practical sense, we suggest an algorithm
to obtain a globally optimal solution in desirable homotopy class
where the performance index is the norm of joint velocity for
given initial configuration.

Step 1. Since the initial condition depends on the task and the
performance criterion, iy must be chosen accordint o
the task. Considering the geometry of the manipulator,
Task 1 is rcasonable to be carried out. So, one may find
uy which produces an optimal trajectory around
minimum notm joint velocity. Therefore, we do not
necd to find joint errors at final time for arbitrary . If
the circle to be traced out has large radius for example,
one must increase Py and then obtain an optimal solution.
If the paramcter i, which produccs an optimal trajectory
is found from p, by the numerical search method, o can

Step 2.

be used to find other i, which gives an optimal trajec-
tory for other initial configuration of the same task. So,
we can obtain the optimal solution for given initial
configuration by using |y, and that is in desirable homo-
topy class.

As shown previous examples, solution C in Fig. 5 can be
obtained by using the same parameter given in solution A in Fig.
3. This procedure can be used as a topological lifting method of
trajectories for any initial configuration of the same task.
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Consideration of Dynamics

v

So far, we have discussed the optimal redundancy resolu-
tion considering only the kinematics of a manipulator. However,
when a trajectory is required to consider the dynamic response,
the dynamics of a manipulator must be taken into considcration.
For the optimal resolution, we may consider the kinctic energy

minimization problem, such as p(®, 8, t)= %GTM (9)9, subject

to the kinematic constraints, where M (@) is thc inertial matrix of
the dynamic equation. For this performance index p, the neces-
sary condition becomes (11) with p = 0. The inertial matrix
M (8) of which links modeled by a point mass at the distal end of
each link [12].

By the numerical mcthod discussed in Section 3, we can
obtain the initial joint velocity which uniquely defines the joint
trajectory for given initial configuration. For comparison, we
consider the case of solution A for Task 1. The optimal solution
is searched around minimum norm solution when y, = 0, then
we obtain a solution shown in Fig. 6 at p, = 0.00971. In this
case the performance index given by the kinetic energy is 35.088,
and that of solution A of Task 1 is 36.824. Thercfore, the
minimization of the norm of joint velocity vector is approxi-
mately as same as the minimization of thc kinctic energy. As
shown in Fig. 6, wc notc that the motions of joint onc have
moved much less than that of solution A of Task 1, then the
kinetic encrgy is minimized with considering dynamics .of the
manipulator.

radian
3.15

236

1.57

- 788
-1.57

-2.36

-3.15

Fig. 6. Solution with consideration of dynamics of the manipulator

In order to better understand the dynamic response, we dep-
ict the motions of the manipulator in Fig. 7. In this case, minim-
izing the total manipulator kinctic energy integrated over the
cntire trajectory may lead to a uniform resolution in joint torques
and a corresponding uniform increase in dynamic response. By
investigating thec motions of the manipulator, we can better
understand the motions of the manipulator between solution A of
Task 1 and the solution in Fig. 6. The motions of joint one in
Fig. 7(b) have moved less than that in Fig. 7(a), therefore, the
kinctic encrgy with the inertial matrix of which modeled by a
point mass at the distal end of each link is minimized.



Fig. 7(a). Motions of solution A in Task 1 when the kinematics
-is considered only.

Fig. 7(b). Motions of solution in Task 1 when the dynamics is
taken into account.

5. CONCLUSIONS

We have solved the problem of the optimal redundancy
resolution for the integral performance criterion and obtained the
necessary condition from the Euler-Lagrange equations in a
second-order differential cquation. In a cyclic task, we have con-
sidered periodic boundary conditions and then reformulated the
periodic boundary value problem as a two point boundary value
problem 1o find the initial joint velocity for given initial
configuration.

In order to satisfy necessary condition as well as periodic
boundary conditions, we presented a numerical method to find an
optimal trajectory. The initial joint velocity which was obtained
by using the joint error between the final and initial joint values
at the final time produces an optimal solution for given initial
configuration.

For a cyclic task, there exist nonhomotopic extremal solu-
tions according to initial joint velocity for same initial
configuration. Thercfore, we suggested a topological lifling
method of trajectorics and demonstrated it. Also we graphically
illustrated an optimal trajectory by considering the dynamics of a
three-link  planar redundant manipulator, which produces the
improved dynamic response, and compared it when only kinemat-
ics was used. -
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