• Title/Summary/Keyword: Integraion

Search Result 4, Processing Time 0.019 seconds

Mathematical analysis of girih tiles for mathematics and design integration education (수학과 디자인 융합 교육을 위한 기리 타일의 수학적 탐색)

  • Suh, Bo Euk
    • Education of Primary School Mathematics
    • /
    • v.20 no.3
    • /
    • pp.237-252
    • /
    • 2017
  • The era of the Fourth Industrial Revolution has also influenced the direction of mathematics education. In particular, the convergence capability that recognizes how mathematics can be applied and utilized in various fields is an important point. The purpose of this study is to examine the point of convergence and to develop a fusion program that can be used in the mathematics classroom. Specifically, we analyze the tiles used in ancient Islamic architecture from a mathematical point of view and develop mathematics and multifamily convergence programs based on them. Through the mathematical analysis of the geometric tiling made 500 years earlier than Penrose, I hope that understanding of design, the use of mathematics and the possibility of convergence of other disciplines through mathematics will be widened.

Simulation of the Dynamic Interactions between Catenary and Pantograph (전차선과 팬터그래프 사이의 동적 상호작용 시뮬레이션)

  • Kwon, Sam-Young;Kim, Gil-Sang
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.455-459
    • /
    • 1995
  • Catenary/pantograph system consists of overhead lines which have non-uniform elasticity and pantographs which move at high speed and give force to the lines, therefore happen to be failed in contacts between both from time to time. In this study, as the first step to develop a dynamic simulation program, the general theory is discussed for catenary/pantograph system and appropriate modelling. And comparison is conducted with the references after making a program which referred to the contact force equation algorithm. On this algorithm, the unknown contact force is computed by the equations which was induced as combining catenary and pantograph motion equations expressed in finite difference form. Another simulation program based on the assumed contact forces algorithm was developed. In this algorithm, numerical integraion of both the overhead line and pantograph equations, which without combining, are effected for two assumed values of contact force. The correct contact force is then obtained from these two sets of results by linear interpolation to satisfy the contact condition. Through the comparative review on the outputs from this program, it is verified that this algorithm is reliable.

  • PDF

Proposals of Integration of Korea Industrial Standard for Aggregates for Efficient Quality Control of Concrete Aggregate (콘크리트용 골재 품질 관리 효율화를 위한 골재 관련 KS 표준 통합 방안)

  • Lee, Jun-Seok;Han, Min-Cheol
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.2
    • /
    • pp.125-135
    • /
    • 2016
  • The objective of this paper is to provide integrated Korea industrial standards(KS) for concrete aggregates, which has been separately provided with ten kinds of KS, in order to improve the way of quality management of concrete aggregate and to prevent distribution of unsuitable aggregates. For the sequences of the paper, typical foreign standards related to concrete aggregates including ASTM for US, EN for EU, JIS for Japan are reviewed and compared to provide necessities and feasibilities of the paper. Based on the analysis above results, existing KS for concrete aggregates, which have been separately provided with ten kinds being lack of correlation between each KS is integrated to KS F 2526 "Aggregates for concrete" in this paper. By doing this, in terms of terminology, the expression of the aggregate, which has been currently classified into specified terminologies of aggregates depending on sources, manufacturing methods of each aggregates, is able to be integrated to single expression of the aggregate for concrete. It is believed that integrated KS presented herein provides more desirable way in terms of its better accessibility, easier revision and closer connection between each aggregate kinds.

A Study on Integraion Method for Improvement of Numerical Stability of Meshfree Method (무요소법의 수치적 안정성 개선을 위한 적분기법 연구)

  • Kang, JaeWon;Kang, Da Hoon;Cho, Jin Yeon;Kim, Jeong Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.3
    • /
    • pp.210-218
    • /
    • 2018
  • In order to generate meshes automatically for finite element analysis of complex structures such as aircraft, a large number of triangular elements are typically created. However, triangular elements are less accurate than rectangular elements, so it is difficult to obtain a reliable solution. This problem can be improved through the meshfree method using the back cell integration. However, this method also causes some problems such as over-use of the integration points and inefficiency of the integral domain. In order to improve these problems, a method of performing integration by setting the integral area based on a node basis has been proposed, but in the case of incompressible material problems, the numerical accuracy deteriorates due to the vibration phenomenon of the solution. Therefore, in this paper, the modified meshfree method is proposed which sets the integral domain as an element domain instead of the nodal domain, and the proposed method improves the numerical instability caused by the conventional meshfree method without decreasing the accuracy regardles of the shape of integral domain. The effectiveness of the modified meshfree method is verified by using 2-D examples.