• Title/Summary/Keyword: Insulin-like growth factor-1

Search Result 397, Processing Time 0.031 seconds

Preparation and Characterization of an Antibody Antagonist That Targets the Porcine Growth Hormone Receptor

  • Cui, Huanzhong;Wang, Yanrong;Song, Meng;Zhang, Hui
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.10
    • /
    • pp.1508-1514
    • /
    • 2016
  • A series of antagonists specifically targeting growth hormone receptors (GHR) in different species, such as humans, rats, bovines, and mice, have been designed; however, there are currently no antagonists that target the porcine growth hormone (GH). Therefore, in this study, we developed and characterized a porcine GHR (pGHR) antibody antagonist (denoted by AN98) via the hybridoma technique. The results from enzyme-linked immunosorbent assay, fluorescence activated cell sorter, indirect immunoinfluscent assay, and competitive receptor binding analysis showed that AN98 could specifically recognize pGHR, and further experiments indicated that AN98 could effectively inhibit pGH-induced signalling in CHO-pGHR cells and porcine hepatocytes. In addition, AN98 also inhibited GH-induced insulin-like growth factor-1 (IGF-1) secretion in porcine hepatocytes. In summary, these findings indicated that AN98, as a pGHR-specific antagonist, has potential applications in pGH-pGHR-related research on domestic pigs.

Molecular Characterization and Expression Pattern of Gene IGFBP-5 in the Cashmere Goat (Capra hircus)

  • Wang, X.J.;Shi, J.J.;Yang, J.F.;Liang, Y.;Wang, Y.F.;Wu, M.L.;Li, S.Y.;Guo, X.D.;Wang, Z.G.;Liu, D.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.5
    • /
    • pp.606-612
    • /
    • 2012
  • Insulin-like growth factor-binding protein-5 (IGFBP-5) is one of the six members of IGFBP family, important for cell growth, apoptosis and other IGF-stimulated signaling pathways. In order to explore the significance of IGFBP-5 in cells of the Inner Mongolian Cashmere goat (Capra hircus), IGFBP-5 gene complementary DNA (cDNA) was amplified by reverse transcription polymerase chain reaction (RT-PCR) from the animal's fetal fibroblasts and tissue-specific expression analysis was performed by semi-quantitative RT-PCR. The gene is 816 base pairs (bp) in length and includes the complete open reading frame, encoding 271 amino acids (GenBank accession number JF720883). The full cDNA nucleotide sequence has a 99% identity with sheep, 98% with cattle and 95% with human. The amino acids sequence shares identity with 99%, 99% and 99%, respectively. The bioinformatics analysis showed that IGFBP-5 has an insulin growth factor-binding protein homologues (IB) domain and a thyroglobulin type-1 (TY) domain, four protein kinase C phosphorylation sites, five casein kinase II phosphorylation sites, three prenyl group binding sites (CaaX box). The IGFBP-5 gene was expressed in all the tested tissues including testis, brain, liver, lung, mammary gland, spleen, and kidney, suggesting that IGFBP-5 plays an important role in goat cells.

Low-dose metronomic doxorubicin inhibits mobilization and differentiation of endothelial progenitor cells through REDD1-mediated VEGFR-2 downregulation

  • Park, Minsik;Kim, Ji Yoon;Kim, Joohwan;Lee, Jeong-Hyung;Kwon, Young-Guen;Kim, Young-Myeong
    • BMB Reports
    • /
    • v.54 no.9
    • /
    • pp.470-475
    • /
    • 2021
  • Low-dose metronomic chemotherapy has been introduced as a less toxic and effective strategy to inhibit tumor angiogenesis, but its anti-angiogenic mechanism on endothelial progenitor cells (EPCs) has not been fully elucidated. Here, we investigated the functional role of regulated in development and DNA damage response 1 (REDD1), an endogenous inhibitor of mTORC1, in low-dose doxorubicin (DOX)-mediated dysregulation of EPC functions. DOX treatment induced REDD1 expression in bone marrow mononuclear cells (BMMNCs) and subsequently reduced mTORC1-dependent translation of endothelial growth factor (VEGF) receptor (Vegfr)-2 mRNA, but not that of the mRNA transcripts for Vegfr-1, epidermal growth factor receptor, and insulin-like growth factor-1 receptor. This selective event was a risk factor for the inhibition of BMMNC differentiation into EPCs and their angiogenic responses to VEGF-A, but was not observed in Redd1-deficient BMMNCs. Low-dose metronomic DOX treatment reduced the mobilization of circulating EPCs in B16 melanoma-bearing wild-type but not Redd1-deficient mice. However, REDD1 overexpression inhibited the differentiation and mobilization of EPCs in both wild-type and Redd1-deficient mice. These data suggest that REDD1 is crucial for metronomic DOX-mediated EPC dysfunction through the translational repression of Vegfr-2 transcript, providing REDD1 as a potential therapeutic target for the inhibition of tumor angiogenesis and tumor progression.

ORAL AND MAXILLOFACIAL MANIFESTATIONS OF LARON SYNDROME (라론 증후군의 구강 악안면 증상)

  • Shin, Cha-Uk;Kim, Young-Jae;Kim, Jung-Wook;Jang, Ki-Taek;Lee, Sang-Hoon;Hahn, Se-Hyun;Kim, Chong-Chul
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.36 no.1
    • /
    • pp.139-144
    • /
    • 2009
  • Laron syndrome was first described by Dr. Laron. Administration of exogenous growth hormone failed to stimulate insulin-like growth factor-I(IGF-I) production which was related to postnatal growth, because these patients lacked receptors in the liver for this hormone. The diagnosis of this syndrome is based on the typical features of GH resistance such as normal or elevated serum GH, low serum IGF-I, and impaired IGF-I response to hGH. Laron syndrome patients showed characteristically severe postnatal growth failure and markedly reduced adult height. This report describes the oral and maxillofacial manifestations of children associated with Laron syndrome. Children with Laron syndrome have several dental and skeletal irregularities. Relatively little is known of the direct effect of Laron syndrome on dental development. Further research should be needed.

  • PDF

Effects of Insulin and IGFs on Phosphate Uptake in Primary Cultured Rabbit Renal Proximal Tubule Cells

  • Han, Ho-Jae;Park, Kwon-Moo
    • The Korean Journal of Physiology
    • /
    • v.30 no.1
    • /
    • pp.63-76
    • /
    • 1996
  • The aim of present study was to characterize phosphate uptake and to investigate the mechanism for the insulin and insulin-like growth factor(IGF) stimulation of phosphate uptake in primary cultured rabbit renal proximal tubule cells. Results were as follows : 1. The primary cultured proximal tubule cells had accumulated $6.68{\pm}0.70$ nmole phosphate/mg protein in the presence of 140 mM NaCl and $2.07{\pm}0.17$ nmole phosphate/mg protein in the presence of 140 mM KCl during a 60 minute uptake period. Raising the concentration of extracellular phosphate to 100 mM$(48.33{\pm}1.76\;pmole/mg\;protein/min)$ induced decrease in phosphate uptake compared with that in control cells maintained in 1 mM phosphate$(190.66{\pm}13.01\;pmole/mg\;protein/min)$. Optimal phosphate uptake was observed at pH 6.5 in the presence of 140 mM NaCl. Phosphate uptake at pH 7.2 and pH 7.9 decreased to $83.06{\pm}5.75%\;and\;74.61{\pm}3.29%$ of that of pH 6.5, respectively. 2. Phosphate uptake was inhibited by iodoacetic acid(IAA) or valinomycin treatment $(62.41{\pm}4.40%\;and\;12.80{\pm}1.64%\;of\;that\;of\;control,\;respectively)$. When IAA and valinomycin were added together, phosphate uptake was inhibited to $8.04{\pm}0.61%$ of that of control. Phosphate uptake by the primary proximal tubule cells was significantly reduced by ouabain treatment$(80.27{\pm}6.96%\;of\;that\;of\;control)$. Inhibition of protein and/or RNA synthesis by either cycloheximide or actinomycin D markedly attenuated phosphate uptake. 3. Extracellular CAMP and phorbol 12-myristate 13 acetate(PMA) decreased phosphate uptake in a dose-dependent manner in all experimental conditions. Treatment of cells with pertussis toxin or cholera toxin inhibited phosphate uptake. cAMP concentration between $10^{-6}\;M\;and\;10^{-4}\;M$ significantly inhibited phosphate uptake. Phosphate uptake was blocked to about 25% of that of control at 100 ng/ml PMA. 3-Isobutyl-1-methyl-xanthine(IBMX) inhibited phosphate uptake. However, in the presence of IBMX, the inhibitory effect of exogenous cAMP was not significantly potentiated. Forskolin decreased phosphate transport. Acetylsalicylic acid did not inhibit phosphate uptake. The 1,2-dioctanoyl-sn-glycorol(DAG) and 1-oleoyl-2-acetyl-sn- glycerol(OAG) showed a inhibitory effect. However, staurosporine had no effect on phosphate uptake. When PMA and staurosporine were treated together, inhibition of phosphate uptake was not observed. In conclusion, phosphate uptake is stimulated by high sodium and low phosphate and pH 6.5 in the culture medium. Membrane potential and intracellular energy levels are also an important factor fer phosphate transport. Insulin and IGF-I stimulate phosphate uptake through a mechanisms that involve do novo protein and/or RNA synthesis and decrease of intracellular cAMP level. Also protein kinase C(PKC) is may play a regulatory role in transducing the insulin and IGF-I signal for phosphate transport in primary cultured proximal tubule cells.

  • PDF

Korean Red Ginseng mitigates spinal demyelination in a model of acute multiple sclerosis by downregulating p38 mitogen-activated protein kinase and nuclear factor-κB signaling pathways

  • Lee, Min Jung;Chang, Byung Joon;Oh, Seikwan;Nah, Seung-Yeol;Cho, Ik-Hyun
    • Journal of Ginseng Research
    • /
    • v.42 no.4
    • /
    • pp.436-446
    • /
    • 2018
  • Background: The potential therapeutic values of Korean Red Ginseng extract (KRGE) in autoimmune disorders of nervous system have not been fully investigated. Methods: We used an acute experimental autoimmune encephalomyelitis animal model of multiple sclerosis and determined the effects and mechanism of KRGE on spinal myelination. Results: Pretreatment with KRGE (100 mg/kg, orally) for 10 days before immunization with myelin basic protein $(MBP)_{68-82}$ peptide exerted a protective effect against demyelination in the spinal cord, with inhibited recruitment and activation of immune cells including microglia, decreased mRNA expression of detrimental inflammatory mediators (interleukin-6, interferon-${\gamma}$, and cyclooxygenase-2), but increased mRNA expression of protective inflammatory mediators (insulin-like growth factor ${\beta}1$, transforming growth factor ${\beta}$, and vascular endothelial growth factor-1). These results were associated with significant downregulation of p38 mitogen-activated protein kinase and nuclear factor-${\kappa}B$ signaling pathways in microglia/macrophages, T cells, and astrocytes. Conclusion: Our findings suggest that KRGE alleviates spinal demyelination in acute experimental autoimmune encephalomyelitis through inhibiting the activation of the p38 mitogen-activated protein kinase/nuclear factor-${\kappa}B$ signaling pathway. Therefore, KRGE might be used as a new therapeutic for autoimmune disorders such as multiple sclerosis, although further investigation is needed.

Hair Growth Effect of TS-SCLF from Schisandra chinensis Extract Fermented with Lactobacillus plantarum

  • Young Min, Woo;Jae Yong, Seo;Soo-ya, Kim;Ji Hyun, Cha;Hyun Dae, Cho;Young Kwon, Cha;Ju Tae, Jeong;Sung Min, Park;Hwa Sun, Ryu;Jae Mun, Kim;Moon Hoy, Kim;Hee-Taek, Kim;Yong-Min, Kim;Kwang Sik, Joo;Sun Mi, Lee;JungNo, Lee;Andre, Kim
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.4
    • /
    • pp.533-547
    • /
    • 2022
  • This study investigated the hair growth effect of Schisandra chinensis extract (TS-SC) and TS-SC fermented by Lactobacillus plantarum (TS-SCLF) on human dermal papilla cells (hDPCs). The production of vascular endothelial growth factor (VEGF), insulin-like growth factor 1 (IGF-1), keratinocyte growth factor/fibroblast growth factor 7 (KGF/FGF-7) and hepatocyte growth factor (HGF), transforming growth factor beta 1 (TGF-β1) were examined. The secretion rates of VEGF and KGF/FGF-7 were high in TS-SC, and the secretion rates of IGF-1 and HGF were high in TS-SCLF. TGF-β1 was inhibited in a concentration-dependent manner in all samples. Gene expression of VEGF, IGF-1, KGF, HGF and alkaline phosphatase, relevant to hair growth, were examined. The data revealed that TS-SC and TS-SCLF successfully promoted hair growth in hDPCs. The IGF-1 gene was expressed in a dose-dependent manner in TS-SCLF. These results indicate that TS-SC and TS-SCLF fermented extract effectively promoted hair growth and gene expression relevant to hair growth in hDPCs. Used in clinical trials the test substance 'CMK-LPF01' showed a statistically significant increase in the number of hairs at 8 weeks, 16 weeks, and 24 weeks compared to before product use, and a change in hair growth, a secondary efficacy evaluation variable. Through additional research in the future, it is expected that "CMK-LPF01" can be developed as a functional material that can help alleviate symptoms of hair loss.

Effects of Arginine Supplementation on Bone Markers and Hormones in Growing Female Rats (성장기 암컷 쥐에서 Arginine 첨가 식이가 골 대사 지표 및 호르몬에 미치는 영향)

  • Choi, Mi-Ja
    • Journal of Nutrition and Health
    • /
    • v.40 no.4
    • /
    • pp.320-326
    • /
    • 2007
  • An important related question is whether arginine has influence bone metabolism. The effect of arginine supplements on bone markers and related hormones were studied in young female Sprague-Dawley rats fed either an arginine supplemented diet or control diet. Twenty four rats (body weight 83${\pm}$5 g) were randomly assigned to one of two groups, consuming casein or casein with supplemented arginine diet. All rats were fed on experimental diet and deionized water ad libitum for 9 weeks. Bone formation was measured by serum osteocalcin and alkaline phosphatase (ALP) concentrations. And bone resorption rate was measured by deoxypyridinoline (DPD) crosslinks immunoassay and corrected for creatinine. Serum osteocalcin, growth hormone, estrogen, insulin-like growth factor-1 (IGF-1), parathyroid hormone (PTH) and calcitonin were analyzed using radioimmunoassay kits. The weight gain and mean food intake were not affected regardless of diets. The rats fed arginine-supplemented diet had not significantly different in ALP, osteocalcin, crosslinks value, PTH, estradiol, and IGF-1 compared to those fed casein diet group. The arginine-supplemented group had significantly higher growth hormone and calcitonin than casein group. This study suggests that arginine is beneficial for bone formation in growing female rats. Therefore exposure to diet which rich in arginine early in life may have benefits for bone formation and osteoporosis prevention.

Curcumin targets vascular endothelial growth factor via activating the PI3K/Akt signaling pathway and improves brain hypoxic-ischemic injury in neonatal rats

  • Li, Jia;An, Yan;Wang, Jia-Ning;Yin, Xiao-Ping;Zhou, Huan;Wang, Yong-Sheng
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.5
    • /
    • pp.423-431
    • /
    • 2020
  • This study aimed to evaluate the effect of curcumin on brain hypoxic-ischemic (HI) damage in neonatal rats and whether the phosphoinositide 3-kinase (PI3K)/Akt/vascular endothelial growth factor (VEGF) signaling pathway is involved. Brain HI damage models were established in neonatal rats, which received the following treatments: curcumin by intraperitoneal injection before injury, insulin-like growth factor 1 (IGF-1) by subcutaneous injection after injury, and VEGF by intracerebroventricular injection after injury. This was followed by neurological evaluation, hemodynamic measurements, histopathological assessment, TUNEL assay, flow cytometry, and western blotting to assess the expression of p-PI3K, PI3K, p-Akt, Akt, and VEGF. Compared with rats that underwent sham operation, rats with brain HI damage showed remarkably increased neurological deficits, reduced right blood flow volume, elevated blood viscosity and haematocrit, and aggravated cell damage and apoptosis; these injuries were significantly improved by curcumin pretreatment. Meanwhile, brain HI damage induced the overexpression of p-PI3K, p-Akt, and VEGF, while curcumin pretreatment inhibited the expression of these proteins. In addition, IGF-1 treatment rescued the curcumin-induced down-regulated expression of p-PI3K, p-Akt, and VEGF, and VEGF overexpression counteracted the inhibitory effect of curcumin on brain HI damage. Overall, pretreatment with curcumin protected against brain HI damage by targeting VEGF via the PI3K/Akt signaling pathway in neonatal rats.

Klotho plays a critical role in clear cell renal cell carcinoma progression and clinical outcome

  • Kim, Ji-Hee;Hwang, Kyu-Hee;Lkhagvadorj, Sayamaa;Jung, Jae Hung;Chung, Hyun Chul;Park, Kyu-Sang;Kong, In Deok;Eom, Minseob;Cha, Seung-Kuy
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.3
    • /
    • pp.297-304
    • /
    • 2016
  • Klotho functions as a tumor suppressor predominantly expressed in renal tubular cells, the origin of clear cell renal cell carcinoma (ccRCC). Altered expression and/or activity of growth factor receptor have been implicated in ccRCC development. Although Klotho suppresses a tumor progression through growth factor receptor signaling including insulin-like growth factor-1 receptor (IGF-1R), the role of Klotho acting on IGF-1R in ccRCC and its clinical relevance remains obscure. Here, we show that Klotho is favorable prognostic factor for ccRCC and exerts tumor suppressive role for ccRCC through inhibiting IGF-1R signaling. Our data shows the following key findings. First, in tumor tissues, the level of Klotho and IGF-1R expression are low or high, respectively, compared to that of adjacent non-neoplastic parenchyma. Second, the Klotho expression is clearly low in higher grade of ccRCC and is closely associated with clinical outcomes in tumor progression. Third, Klotho suppresses IGF-1-stimulated cell proliferation and migration by inhibiting PI3K/Akt pathway. These results provide compelling evidence supporting that Klotho acting on IGF-1R signaling functions as tumor suppressor in ccRCC and suggest that Klotho is a potential carcinostatis substance for ccRCC.