• 제목/요약/키워드: Insulation properties

Search Result 904, Processing Time 0.029 seconds

물유리코팅에 따른 폴리우레탄 폼의 난연성능 개선에 대한 연구 (Improvement of Flame-Retardant Performance of Polyurethane Foam Coated with Water Glass)

  • 김형준;박제원;나혜인;임형미;장가빈
    • 한국화재소방학회논문지
    • /
    • 제34권2호
    • /
    • pp.7-13
    • /
    • 2020
  • 경질 폴리우레탄(Polyurethane) 폼(Foam)의 난연 성능을 개선하기 위하여 외부에 물유리를 코팅하였다. 무기질인 물유리 코팅층이 적용된 우레탄폼의 콘칼로리메터의 열방출율(Heat release rate)은 급격히 감소하였다. 폴리우레탄 표면에 코팅된 물유리는 화염에 노출되었거나 가열되었을 때 유리화 반응과 미 탈출 수분에 의한 발포현상으로 인해 유리질 폼을 형성하게 된다. 폴리우레탄 폼 위에 형성된 유리질 폼은 단열층이 되어 10 min 이상 폴리우레탄 폼의 연소를 억제하였다. 이러한 결과에 따라서 물유리는 경질 폴리우레탄 폼의 난연 특성을 개선할 수 있음을 확인하였다.

열처리 온도에 따른 ITO/MEH-PPV/Al 구조의 유기 발광다이오드의 특성연구 (Properties of Organic Light Emitting Diode with ITO/MEH-PPV/Al Structure on Heating Temperatures)

  • 조중연;장호정
    • 마이크로전자및패키징학회지
    • /
    • 제10권4호
    • /
    • pp.35-38
    • /
    • 2003
  • ITO/glass 기판 위에 발광물질로서 poly(2-methoxy-5-(2-ethylhexoxy)-1,4-phenylenevinylene (MEH-PPV)를 이용하여 스핀코팅법(spin coating)으로 Glass/ITOM/MEH-PPV/Al 구조를 가지는 고분자 유기 발광 다이오드를 제작하였다. MEH-PPV 박막형성시 열처리온도에 따른 다이오드의 전기적, 광학적 특성을 조사하였다. 열처리 온도를 $65^{\circ}C$에서 $170^{\circ}C$로 증가함에 따라 유기 발광다이오드의 발광휘도는 10V 인가전압에서 630 cd/$\m^2$에서 280 cd/$\m^2$로 크게 감소하였다. 또한 $65^{\circ}C$에서 열처리한 시료의 경우 약 2 lm/W의 최대 발광효율을 나타내었다. 이러한 결과는 높은 온도에서 열처리시 MEH-PPV 유기 형광층과 전극간의 상호반응에 의한 계면 거칠기의 증가와 새로운 절연층의 형성 등과 관련이 있는것으로 판단된다.

  • PDF

XLPE/EPR 계면의 부분방전 패턴 분석을 위한 신경망 모형 (Neural Network Model for Partial Discharge Pattern Analysis of XLPE/EPR Interface)

  • 조경순
    • 한국컴퓨터산업학회논문지
    • /
    • 제6권2호
    • /
    • pp.357-364
    • /
    • 2005
  • 최근 들어 우리나라에서는 설치의 간편성과 높은 신뢰도를 가진 전력케이블의 사용이 증가하고 있다. 전력케이블은 출고 전에 IEEE std. 404-1993 시험을 거쳐 안정성을 확인하고 있지만 포설시 발생하는 접속부 내부의 결함으로 인하여 많은 문제가 발생하고 있다. 특히 불순물 혼입 또는 공극 발생시 고장율은 증가하게 된다 부분방전 검출은 포설 후 전력케이블의 상태를 관측할 수 있는 유용한 방법이다. 본 연구에서는 부분방전 특성을 평가하고자 케이블 접속재인 EPR과 케이블 절연체인 XPLE 사이에 인공 결함을 발생시킨 후 데이터 취득 시스템을 이용하여 $\Phi-q-n$ 특성을 검출하였으며, 부분방전의 정량적 해석을 위해 필요한 통계량을 계산하였으며, 신경망 모델을 적용하여 패턴 분석을 수행하여 $88\~96\%$의 구별이 가능하였다.

  • PDF

Effect of Space Charge Density and High Voltage Breakdown of Surface Modified Alumina Reinforced Epoxy Composites

  • Chakraborty, Himel;Sinha, Arijit;Chabri, Sumit;Bhowmik, Nandagopal
    • Transactions on Electrical and Electronic Materials
    • /
    • 제14권3호
    • /
    • pp.121-124
    • /
    • 2013
  • The incorporation of 90 nm alumina particles into an epoxy matrix to form a composite microstructure is described in present study. It is shown that the use of ultrafine particles results in a substantial change in the behavior of the composite, which can be traced to the mitigation of internal charges when a comparison is made with conventional $Al_2O_3$ fillers. A variety of diagnostic techniques have been used to augment pulsed electro-acoustic space charge measurement to provide a basis for understanding the underlying physics of the phenomenon. It would appear that, when the size of the inclusions becomes small enough, they act cooperatively with the host structure and cease to exhibit interfacial properties. It is postulated that the $Al_2O_3$ particles are surrounded by high charge concentrations. Since $Al_2O_3$ particles have very high specific areas, these regions allow limited charge percolation through $Al_2O_3$ filled dielectrics. The practical consequences of this have also been explored in terms of the electric strength exhibited. It would appear that there was a window in which real advantages accumulated from the nano-formulated material. An optimum filler loading of about 0.5 wt.% was indicated.

기포제 혼입 단열형 경량모르타르의 물리적 특성 및 압축강도 추정에 관한 기초적 연구 (Fundamental Study on Estimating Compressive Strength and Physical Characteristic of Heat insulation Lightweight Mortar With Foam Agent)

  • 민태범;우영제;이한승
    • KIEAE Journal
    • /
    • 제10권3호
    • /
    • pp.89-96
    • /
    • 2010
  • In comparison with ordinary or heavy-weight concrete, light-weight air void concrete has the good aspects in optimizing super tall structure systems for the process of design considering wind load and seismic load by lightening total dead load of buildings and reducing natural resources used. Light-weight air void concrete has excellent properties of heat and sound insulating due to its high amount porosity of air voids. So, it has been used as partition walls and the floor of Ondol which is the traditional Korean floor heating system. Under the condition of which the supply of light-weight aggregates are limited, the development of light-weight concrete using air voids is highly required in the aspects of reduced manufacturing prices and mass production. In this study, we investigated the physical properties and thermal behaviors of specimens that applied different mixing ratios of foaming agent to evaluate the possibility of use in the structural elements. We proposed the estimating equation for compressive strength of each mix having different ratio of foaming agent. We also confirmed that the density of cement matrix is decreased as the mixing amount of foaming agent increase up to 0.6% of foaming agent mixing ratio which was observed by SEM. Based on porosity and compressive strength of control mortar without foaming agent, we built the estimating equations of compressive strength for mortars with foaming agent. The upper limit of use in foaming agent is about 0.6% of the binder amount. Each air void is independent, and size of voids range from 50 to $100{\mu}m$.

혼합물 실험계획과 다수 반응변수 최적화를 통한 속경화 초저온접착제 개발 사례 (A Case Study of Developing Rapid-Hardening Ultra-Low Temperature Adhesives by Mixture Design and Multiple Response Optimization)

  • 변재현;서판석;신지은;이륜규;염지현
    • 품질경영학회지
    • /
    • 제42권4호
    • /
    • pp.757-768
    • /
    • 2014
  • Purpose: In this paper we present a case study of developing fast curing adhesives for insulation material of LNG carriers using an extreme vertices design with four mixture components. Three material properties are considered - shear strength, viscosity, and tensile strength. In the optimization experiment, we used hardness instead of tensile strength due to shortage of specimens. Methods: We employ four-factor extreme vertices design with 19 runs and desirability function approach for simultaneously optimizing three responses. After selecting optimal condition of the mixture components, we do confirmation experiments to verify the reproducibility of the optimal condition under manufacturing circumstance. Results: Simultaneous optimal condition for the three responses, that is, shear strength, viscosity, and harness is obtained. At the optimal condition, confirmation experiments are executed in manufacturing circumstance. The variation for the shear strength is not satisfactory, which is due to the variation of the humidity. Conclusion: At the optimal condition three material properties are satisfactory. To reduce the variability for the shear strength, robust design is needed.

천연섬유질을 심재로 사용한 친환경 복합단열재의 물성 (Physical Properties of Environment-friendly Insulating Composite Materials Using Natural Cellulose as a Core Material)

  • 황의환;조성준;김진만
    • Korean Chemical Engineering Research
    • /
    • 제49권1호
    • /
    • pp.120-127
    • /
    • 2011
  • 친환경 복합단열재를 개발하기 위하여 천연섬유질(목재칩 및 톱밥)을 심재로, 활성황토를 결합재로 사용하였다. 물/결합재비 및 천연섬유질/결합재비를 다양하게 변화시켜 공시체를 제작하였으며, 공시체의 제 물성을 조사하기 위하여 압축 및 휨강도, 흡수성, 내열수성, 열전도도, 세공분포측정 및 SEM에 의한 미세조직 관찰을 실시하였다. 그 결과 흡수율은 천연섬유질/결합재비가 증가될수록 증가되었으나 폴리머/결합재비 증가에 따라 현저히 감소되었다. 압축 및 휨강도는 물/결합재비 및 천연섬유질/결합재비에 따라 다양한 특성을 나타내었다. 천연섬유질/결합재비 및 폴리머/결합재비가 증가됨에 따라 열전도도는 감소되었다. SEM조사에서 활성황토 결합재는 수화결정체가 잘 형성되어 치밀한 조직을 관찰할 수 있었고, 활성황토를 결합재로 사용한 시편의 총세공량은 생황토를 결합재로 사용한 시편의 총세공량에 비하여 적게 나타났다.

COG 본딩의 접합 특성에 관한 연구 (A Study on the Bonding Performance of COG Bonding Process)

  • 최영재;남성호;김경태;양근혁;이석우
    • 한국정밀공학회지
    • /
    • 제27권7호
    • /
    • pp.28-35
    • /
    • 2010
  • In the display industry, COG bonding method is being applied to production of LCD panels that are used for mobile phones and monitors, and is one of the mounting methods optimized to compete with the trend of ultra small, ultra thin and low cost of display. In COG bonding process, electrical characteristics such as contact resistance, insulation property, etc and mechanical characteristics such as bonding strength, etc depend on properties of conductive particles and epoxy resin along with ACF materials used for COG by manufacturers. As the properties of such materials have close relation to optimization of bonding conditions such as temperature, pressure, time, etc in COG bonding process, it is requested to carry out an in-depth study on characteristics of COG bonding, based on which development of bonding process equipment shall be processed. In this study were analyzed the characteristics of COG bonding process, performed the analysis and reliability evaluation on electrical and mechanical characteristics of COG bonding using ACF to find optimum bonding conditions for ACF, and performed the experiment on bonding characteristics regarding fine pitch to understand the affection on finer pitch in COG bonding. It was found that it is difficult to find optimum conditions because it is more difficult to perform alignment as the pitch becomes finer, but only if alignment has been made, it becomes similar to optimum conditions in general COG bonding regardless of pitch intervals.

혼화재료에 의한 경량기포 콘크리트의 품질향상에 관한 기초적 연구 (A Fundamental Study on the Quality Improvement of Lightweight Foamed Concrete with Admixture Types)

  • 신재경;정광복;이율구;이건철;윤기원;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2006년도 춘계학술논문 발표대회 제6권1호
    • /
    • pp.35-38
    • /
    • 2006
  • This study investigated fundamental properties of lightweight foamed concrete using cement kiln dust (CKD) and both fly ash(FA) and stability agent. Test results showed that concrete incorporating more amounts of admixture decreased slump flow and it caused increase of superplasiticizer in order to secure the fluidity performance. In addition concrete adding stability agent showed stable flow state, resisting segregation of materials and decreasing bleeding capacity. Sinking depth of concrete incorporating 20% of CKD and adding 0.002% of stability agent was indicated at 0mm. For the properties of hardened concrete. compressive strength of concrete incorporating CKD declined due to a lower appearance density, compared with other specimens. The difference of that was not very significant and the value of ail specimen was higher than KS range. Moreover strength of concrete incorporating CKD was even higher at curing temperature $5^{\circ}C$. Tensile strength ratio of concrete incorporating CKD was indicated between 0.50 to 0.59, which is higher value than control concrete. Heat conductivity of concrete incorporating FA was under the KS range while concrete incorporating 20% of CKD was satisfied in KS. Concrete adding stability agent improved insulation performance due to the lower heat conductivity. In conclusion, it is possible that concrete incorporating 20% of CKD and adding 0.002% of stability agent can secure high quality of lightweight foamed concrete.

  • PDF

LSR 계면의 접착특성 및 절연파괴거동 (Adhesion properties and Breakdown behaviors of LSR Interface)

  • 윤승훈;남진호;이건주;최수걸;신두성;지응서
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 추계학술대회 논문집 Vol.15
    • /
    • pp.232-235
    • /
    • 2002
  • Recently developed liquid silicone rubber (LSR) can be cured by platinum catalyzed additional hydrosilylation mechanism and has the advantage of no byproduct compared to traditional millable peroxide curing silicone rubber. We investigated the characteristics of dielectric breakdown of silicone rubber and adhesion properties between semi-conductive LSR and insulating LSR for high voltage application of pre-molded joint (PMJ). In order to understand the dielectric breakdown characteristics, we used the sheet samples and the paired type rogowski insert electrode system. The breakdown strength and adhesion strength of LSR (E-3) were superior to those of several silicone rubbers. Adhesion strength could be improved by curing at high temperature without post-curing process or enhanced by post-curing process. When LSR (E-3) was cured at $(150^{\circ}C{\times}10min$ semi-conductive )${\times}$ ($175^{\circ}C{\times}10min$ insulation), it showed the high breakdown strength with low standard deviation, and good adhesion strength. In this results, we could apply this process to the fabrication of PMJ without post-curing.

  • PDF