• Title/Summary/Keyword: Insulating material epoxy resin

Search Result 37, Processing Time 0.029 seconds

Analysis of DC insulation and properties of epoxy/ceramic composites with nanosized ZnO/TiO2 fillers

  • Kwon, Jung-Hun;Kim, Yu-Min;Kang, Seong-Hwa;Kim, Pyung-Jung;Jung, Jong-Hoon;Lim, Kee-Joe
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc2
    • /
    • pp.332-335
    • /
    • 2012
  • A molded transformer is maintenance-free, which makes it unnecessary to replace the insulating material, like in an oil-filled transformer, because the epoxy, which is a molded insulating resin, does not suffer variations in its insulating performance for heat cycles over a long time, as compared to insulating oil. In spite of these advantages, a molded transformer may still be accessed by the user, which is not good in regards to reliability or noise compared to the oil transformers. In particular, a distrust exists regarding reliability due to the long-term insulating performance. These properties have been studied in regards to the improvement of epoxy composites and molded transformer insulation. There have nevertheless been insufficient investigations into the insulation properties of epoxy composites. In this study, it is a researching of the epoxy for insulating material. In order to prepare the specimens, a main resin, a hardener, an accelerator, and a nano/micro filler were used. Varying amounts of TiO2 and ZnO nano fillers were added to the epoxy mixture along with a fixed amount of micro silica. This paper presents the DC insulation breakdown test, thermal expansion coefficient, and thermal conductivity results for the manufactured specimens. From these results, it has been found that the insulating performance of nano/micro epoxy composites is improved as compared to plain molded transformer insulation, and that nano/micro epoxy composites contribute to the reliability and compactness of molded transformers.

Volume Resistivity Characteristics of Epoxy Resin using Nanocomposites (나노 컴퍼지트 에폭시 절연재료의 체적 고유저항 특성)

  • Choi, Hyun-Min;Kim, Joung-Sik;Kim, Won-Jong;Park, Young-Ha;Kim, Gwi-Yeol;Shin, Jong-Yeol;Lee, Jong-Yong;Hong, Jin-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.387-387
    • /
    • 2009
  • In the study the volume resistivity Characteristics of epoxy resin using nanocomposites, nano-comosites are made from insulating material epoxy resin using for power transformer equipment and molding several devices as changing amount of addition of diameter 12 [nm] $SiO_2$, we measured volume resistivity of nano-composites by High Resistance Meter(4329A). As the result of measurement, we have seen the epoxy resin using 1.6 [wt%] nanocomposites was the highest measured at the volume resistivity, and using 0.4 [wt%] nanocomposites was highest stabilized than others according to variable temperature properties.

  • PDF

Surface Characteristics and Tracking Resistance of Epoxy Insulating Materials against Ultraviolet (자외선 열화에 의한 에폭시 절연재료의 표면특성과 내트래킹성)

  • Cho, Han-Goo;Yoo, Dae-Hoon;Kang, Hyung-Kyung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.495-496
    • /
    • 2008
  • This paper describes the influence of Ultra-violet irradiation on time to tracking resistance of epoxy insulating materials by use of the inclined plane test. And, the influence of surface degradation was evaluated through several method such as measurement of contact angle, surface roughness, using a scanning electron microscopy. As the 1000 hours of the surface degradation with UV-CON, the flashover time decreases at different rates depending on epoxy resin and silicone rubber specimen. As the duration of the surface degradation with UV-CON is prolonged, the contact angle of epoxy resin decreases at the rate of degradation time, while that of silicone rubber was not exchanged. It is assumed that this phenomenon is related to the decrease in hydrophobicity of the surface of the materials. Also, as to epoxy resin, the decrease of hydrophobicity due to surface degradation with UV-CON is greater than that resulting from surface degradation with WOM. The UV radiation produced chalking and crazing on the surface of the insulating materials specimen.

  • PDF

Effect of coupling agent on the dielectric and mechanical properties of GFRP (GFRP의 유전적 및 기계적 특성에 미치는 계면결합제의 효과에 관한 연구)

  • 곽영순;신중홍;홍영기;조성수;박정후
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1988.10a
    • /
    • pp.43-45
    • /
    • 1988
  • This paper deals with the effect amino silane coupling agent for the composite insulating material (GFRP). Three kinds of coupling agent treatments are studied, that is treatment on glass fiber, epoxy resin and both glass fiber and epoxy resin. The result shows that the optimum electrical and mechanical properties is obtained for the sample treated on the glass fiber with 0.3% amino silane water solution.

  • PDF

A Study on Partial Discharge Propeties of Interface Layer in-Mica-Epoxy Composite Material (마이카-에폭시 복합절연계 계면층의 부분방전 특성에 관한 연구)

  • 이은학;김태성;박종건;이덕출
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1991.10a
    • /
    • pp.83-89
    • /
    • 1991
  • The partial discharge properties of interface layer in Mica-Epoxy composite, which has been mainly used for the coil insulating material of high voltage machinery, are different from those of resins due to the abnormal interface layer to be presented between inorganic material and resin. Accordingly, the study on discharge of interface in composite insulting system is strongly requsted for not only an increasing of insulating strength, but also the basical information of diagnosis system for high voltage equipment. As a result, it has been confirmed that the interface is an abnormal resin layer and the contact states at interface is depended upon the density of silane aqueous solution. Pulse frequency at abnormal interface shows a linear increasing with enlargement of discharge quantity. Whereas, in case of normal interface, pulse frequency property represents exponential increasing at the point of saturating. A life model can be diagramed from results of time dependance of skewness, and a survival life time can be quantified from the life model suggested.

The Effect of Silane and Dispersant on the Packing in the Composite of Epoxy and Soft Magnetic Metal Powder (실란 및 분산제가 Epoxy와 연자성 금속 파우더 복합체의 Packing에 미치는 영향)

  • Lee, Chang Hyun;Shin, Hyo Soon;Yeo, Dong Hun;Nahm, Sahn
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.12
    • /
    • pp.751-756
    • /
    • 2017
  • A molding-type power inductor is an inductor that uses a hybrid material that is prepared by mixing a ferrite metal powder coated with an insulating layer and an epoxy resin, which is injected into a coil-embedded mold and heated and cured. The fabrication of molding-type inductors requires various techniques such as for coil formation and insertion, improving the magnetic properties of soft magnetic metal powder, coating an insulating film on the magnetic powder surface, and increasing the packing density by well dispersing the powder in the epoxy resin. Among these aspects, researches on additives that can disperse the metal soft magnetic powder having the greatest performance in the epoxy resin with high charge have not been reported yet. In this study, we investigated the effect of silanes, KBM-303 and KBM-403, and a commercial dispersant on the dispersion of metal soft magnetic powders in epoxy resin. The sedimentation height and viscosity were measured, and it was confirmed that the silane KBM-303 was suitable for dispersion. For this silane, the packing density was as high as about 72.49%. Moreover, when 1.2 wt% of dispersant BYK-103 was added, the packing density was about 80.5%.

The Effect of Interpenetrating Polymer Network upon Tracking Resistance of Epoxy Composite Materials (에폭시 복합재료의 내트래킹성에 미치는 상호침입망목의 효과)

  • 김탁용;이덕진;손인환;김명호;김경환;김재환
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.225-229
    • /
    • 1996
  • In this study, in order to develop outdoor insulating materials, SIN(simultaneous interpenetrating polymer network) was introduced to Epoxy resin and the environment resistance was investigated. The single network structure specimen(E series) formed of Epoxy resin alone and simultaneous interpenetrating polymer network specimen (EM series) in which epoxy resin was taken as the first network and methyl methacrylate resin as the second network were manufactured. Ten kinds of specimens were manufacture by filler (SiO$_2$) content. SEM were utilized in order to confirm their network structure changes, and AC voltage dielectric strength was measured. Also, UV-test and tracking test were carried out investigate the environment resistance characteristic. Therefore the variations of network structure were happened as a result of SEM test, and it was confirmed that simultaneous interpenetrating polymer network specimens were more excellent than single network structure specimens.

  • PDF

Electrical Insulating Characteristics of Mixing Epoxy Resin (혼합 에폭시 수지의 전기 절연특성)

  • 홍경진;정우성;이은학;김태성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1990.10a
    • /
    • pp.95-97
    • /
    • 1990
  • This study investigated electrical characteristic of solids and liquid epoxy resins by measuring dielectric breakdown and dielectric loss when epoxy resins were exposed to a mixing cure. It was found that mixing epoxy resins were superior to dielectric breakdown and hardness and has shorter curing time compare with those of pure liquid epoxy resins.

A study on the dielectric breakdown properties of two and three interpenetrating polymer network epoxy composites (2,3 성분 상호침입망목 에폭시 복합재료의 절연 파괴 특성에 관한 연구)

  • 김명호;김경환;손인환;이덕진;장경욱;김재환
    • Electrical & Electronic Materials
    • /
    • v.9 no.4
    • /
    • pp.364-371
    • /
    • 1996
  • In this study, in order to investigate the applicability of IPN structure to epoxy resin which has been widely used as electrical and electronic insulating materials, DC dielectric breakdown properties and morphology were compared and analyzed according to variation of network structure, using the single network structure specimen formed of epoxy resin alone, interpenetrating polymer network specimen formed of epoxy resin/methacrylic acid resin, and interpenetrating polymer network specimen formed of epoxy resin/methacrylic acid resin/polyurethane resin. As results of the measunnent of DC dielectric breakdown strength at 50[.deg. C] and 130[>$^{\circ}C$], IPN specimen formed of epoxn, resin 100[phr] and methacrylic acid resin 35[phr] was the most excellent, and which corresponded to the SEM phenomena. The effect of IPN was more remarkable at high temperature region than at low temperature region. It is supposed that the defect of epoxy resin, dielectric breakdown strength is lowered remarkably at high temperature region, be complemented according to introducing IPN method.

  • PDF

A Study on Electrical Properties and Structure Analysis of Epoxy-Ceramic Composite Materials (에폭시-세라믹 복합재료의 전기적 특성 및 구조분석)

  • 정지원;홍경진;김태성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.05a
    • /
    • pp.9-12
    • /
    • 1994
  • Epoxy-Ceramic Composite have good insulating, therma1 and mechanical properties, so it is studied actively on this material. In this thesis, we made a composite material b)\ulcorner filling Epoxy Resin with ceramics treated with Sillane Coupling Agent and studied dielectric and insulating characteristics according to treatment density of Sillane Coupling Agent and weight percent of filler. As a result, loss tangent increase and electrical breakdown voltage decrease according to increasing treatment density of sillane coupling agent because Interface matching between matrix and filler is not good. The best treatment density of sillane coupling agent is 0.5% water solution, in this density the best interface matching is achieved so good dielectric and insulation characteristics are shown. Dielectric and insulation characteristics according to weight percent of filler are best at 25wt.

  • PDF