• Title/Summary/Keyword: Installed base

Search Result 346, Processing Time 0.039 seconds

Evaluation of The Effects of Fiber Grid Reinforcement on the Thickness Reduction of Asphalt Pavement (섬유 그리드를 이용한 아스팔트 포장 단면 감소 효과 분석)

  • Ham, Sang Min;Kim, Booil
    • International Journal of Highway Engineering
    • /
    • v.19 no.5
    • /
    • pp.43-48
    • /
    • 2017
  • PURPOSES : The purpose of this study is to verify the effects of fiber grid reinforcement on the thickness reduction of asphalt pavement. Test sections were constructed on the national highway to evaluate the structural capacity of asphalt pavement with the reinforced fiber grid and normal asphalt pavement. METHODS : Falling Weight Deflectometer (FWD) tests were performed to measure the structural capacity of test sections. The loads of the FWD test are 4.1 ton, 8.0 ton, 10.0 ton, and loaded twice, respectively. The test sections consist of a reference asphalt pavement section, an asphalt pavement section reduced with a 5-cm base layer thickness, and a fiber grid reinforced asphalt pavement section reduced with a 5-cm base layer thickness. In addition, strain data was collected using strain gauges installed in the test sections. RESULTS : The results of the FWD tests showed that the deflections of the pavement section reinforced with the fiber grid was reduced by about 14% compared with that of the reference asphalt pavement section. The strain at the bottom of the asphalt surface layer of the pavement section reduced to a 5-cm base thickness and reinforced with a fiber grid was similar to that at the bottom of the asphalt layer of the reference asphalt pavement. CONCLUSIONS : The results of the FWD and strain tests showed the possibility of the pavement thickness reduction by reinforcement with a fiber grid.

Application of Isolation System to the Lighthouse Structure (등대구조물의 면진시스템 적용방안 연구)

  • Hur, Moo Won;Chun, Young Soo;Kim, Dong Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.1
    • /
    • pp.27-36
    • /
    • 2013
  • In this study, seismic isolation technology to the lighthouse structure is suggested and isolation effects on response reduction are studied for three types of isolation models with the proposed seismic isolation technology. A seismic isolation system is installed on the base of the lighthouse structure in model 1, on the base of the lighthouse lens in model 2, and on the base of both of them in model 3. The dynamic time history analysis verifies that in case of model 1, the earthquake loading is greatly reduced and the accelerations of superstructure are greatly reduced. Also, the inter-story drifts are very small and can be neglected. The isolated model is in translational state and can be seen as a rigid whole. as a results, model 1 is very effective to mitigate the influence of earthquake on structures. In model 2, isolation effects are valid but special care should be taken to failure of the non-isolated lighthouse sub-structure. In model 3, isolation effects are also valid but the effects are small. model 3 is less effective than model 1.

Effect of Slip-Controlled Torque Converter Damper Clutch in 5-Speed Automatic Transmission on Slip Rate and Fuel Economy (5속 A/T용 자동변속기 토크컨버터 댐퍼클러치 슬립제어가 슬림율과 연비에 미치는 영향)

  • Lee, Gee-Soo;Kim, Deok-Jung;Kim, Hyun-Chul;Na, Byung-Chul;Heo, Hyung-Seok;Lee, Ho-Gil;Jang, Jae-Duk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.3
    • /
    • pp.74-80
    • /
    • 2009
  • The objective of this paper was to investigate the slip rate and the slip frequency number of damper clutch of torque converter in 2.4L passenger vehicle with 5-speed A/T and analyze the effect of slip control and control strategy on driving characteristics and the fuel economy. The newly developed torque converter with the more durable wet friction material and the slip-controlled damper clutch system, the DCC system, was installed, which was easily compatible and amendable of the lock-up clutch of the base system. The vehicle has been tested on the fuel economy modes such as FTP-75, HWFET and NEDC (ECE15+EUDC) driving cycle at chassis dynamometer. The DCC mode (II), of which the control strategy had both the lock-up and the slip-controlled clutch, and the DCC mode (I) with full slip-controlled clutch were compared with the base system with only the lock-up clutch. As the research result, comparison to base system, the fuel consumption of the vehicle with the DCC control (II) was effectively improved by 6.6% and 7.7% on FTP-75 and NEDC mode.

Improvement of the Performance Based Seismic Design Method of Cable Supported Bridges with Resilient-Friction Base Isolation Systems (I- Analysis of Field Testing of Cable Supported Bridge) (마찰복원형 지진격리장치가 설치된 케이블교량의 성능 기반 내진설계법 개선(I-실 교량 실험 결과 분석))

  • Gil, Heungbae;Park, Sun Kyu;Han, Kyoung Bong;Yoon, Wan Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.4
    • /
    • pp.157-167
    • /
    • 2020
  • In this study, a field bridge test was conducted to find the dynamic properties of cable supported bridges with resilient-friction base isolation systems (R-FBI). Various ambient vibration tests were performed to estimate dynamic properties of a test bridge using trucks in a non-transportation state before opening of the bridge and by ordinary traffic loadings about one year later after opening of the bridge. The dynamic properties found from the results of the tests were compared with an analysis model. From the result of the ambient vibration tests of the cable supported bridge with R-FBI, it was confirmed that the dynamic properties were sensitive to the stiffness of the R-FBI in the bridge, and the seismic analysis model of the test bridge using the effective stiffness of the R-FBI was insufficient for reflecting the dynamic behavior of the bridge. In the case of cable supported bridges, the seismic design must follow the "Korean Highway Bridge Design Code (Limit State Design) for Cable supported bridges." Therefore, in order to reflect the actual behavior characteristics of the R-FBI installed on cable-supported bridges, an improved seismic design procedure should be proposed.

Seismic Fragility Analysis of Base Isolated NPP Piping Systems (지진격리된 원전배관의 지진취약도 분석)

  • Jeon, Bub Gyu;Choi, Hyoung Suk;Hahm, Dae Gi;Kim, Nam Sik
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.29-36
    • /
    • 2015
  • Base isolation is considered as a seismic protective system in the design of next generation Nuclear Power Plants (NPPs). If seismic isolation devices are installed in nuclear power plants then the safety under a seismic load of the power plant may be improved. However, with respect to some equipment, seismic risk may increase because displacement may become greater than before the installation of a seismic isolation device. Therefore, it is estimated to be necessary to select equipment in which the seismic risk increases due to an increase in the displacement by the installation of a seismic isolation device, and to perform research on the seismic performance of each piece of equipment. In this study, modified NRC-BNL benchmark models were used for seismic analysis. The numerical models include representations of isolation devices. In order to validate the numerical piping system model and to define the failure mode, a quasi-static loading test was conducted on the piping components before the analysis procedures. The fragility analysis was performed by using the results of the inelastic seismic response analysis. Inelastic seismic response analysis was carried out by using the shell finite element model of a piping system considering internal pressure. The implicit method was used for the direct integration time history analysis. In addition, the collapse load point was used for the failure mode for the fragility analysis.

Analysis of Seismic Response According to Installation Location of Seismic Isolation System Applied to High-Rise Building (고층 건물에 적용한 면진 시스템의 설치 위치에 따른 지진 응답 분석)

  • Kim, Min-Ju;Kim, Dong-Uk;Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.4
    • /
    • pp.81-88
    • /
    • 2018
  • Seismic isolation systems have typically been used in the form of base seams in mid-rise and low-rise buildings. In the case of high-rise buildings, it is difficult to apply the base isolation. In this study, the seismic response was analyzed by changing the installation position of the seismic isolation device in 3D high - rise model. To do this, we used 30-story and 40-story 3D buildings as example structures. Historic earthquakes such as Mexico (1985), Northridge (1994) and Rome Frieta (1989) were applied as earthquake loads. The installation position of the isolation device was changed from floor to floor to floor. The maximum deformation of the seismic isolation system was analyzed and the maximum interlaminar strain and maximum absolute acceleration were analyzed by comparing the LB model with seismic isolation device and the Fixed model, which is the base model without seismic isolation device. If an isolation device is installed on the lower layer, it is most effective in response reduction, but since the structure may become unstable, it is effective to apply it to an effective high-level part. Therefore, engineers must consider both structural efficiency and safety when designing a mid-level isolation system for high-rise buildings.

Aerodynamic Analysis and System Implementation of Vertical Axis Wind Turbine using Individual Blade Pitch Control Method (개별 블레이드 피치 제어 방식을 이용한 수직축 풍력발전기의 성능 해석 및 시스템 구현)

  • Jeong, In-Oh;Lee, Yun-Han;Hwang, In-Seong;Kim, Seung-Jo
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3347-3352
    • /
    • 2007
  • This paper describes a research for the performance improvement of the straight-bladed vertical axis wind turbine. To improve the performance of VAWT, the individual blade pitch control method is adopted. For the wind turbine, CFD analysis is carried out by changing blade pitch angle according to the change of wind speed and wind direction. By this method, capacity and power efficiency of VAWT are obtained according to the wind speed and rotating of rotor, and could predict the overall performance of VAWT. It was manufactured to verify performance of the experimental system that consists of rotor including four blades and base. Furthermore, torque sensor and power generator were installed. Also, active controller which can change the pitch angle of the individual blade according to the wind speed and direction was used.

  • PDF

Case Study on the Characteristics of Vertical Bearing Capacity for Steel Pipe Pile Installed by PRD (PRD 강환 말뚝의 연직지지력 특성에 관한 사례 연구)

  • 최용규;정창규;정성기;김동철;정태만
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.225-232
    • /
    • 1999
  • Construction case of PRD (Percussion Rotary Drill) pipe pile and matters to be attended in construction of PRD pile were reviewed. The compressive and uplifting static pile load tests for PRD piles were performed and, also, analysis by Pile Driving Analyzer was done. Based on these results, bearing components in each resisting part (that is: steel toe, external skin, and internal skin) were measured separately. The measured resisting force was compared to the value calculated by the estimated formula. The pile capacity was mobilized in steel toe area and the external skin friction and the internal friction were not produced. Thus, it could be considered that toe of PRD pile should be supported in hard bearing stratum (for example, the fresh soft rock).

  • PDF

Analysis of Slab Joint Opening Due to Temperature Drop in Continuous Precast Concrete Slab Track (연속 프리캐스트 콘크리트 슬래브궤도에서의 온도하강에 따른 슬래브 이음매 개구량 해석)

  • Jang, Seung-Yup;Lee, Jeong-Wan
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1659-1663
    • /
    • 2011
  • Precast concrete slab track is a track structure to be installed by transporting and assembling precast concrete slabs manufactured at the factory. This method can improve concrete quality, provide easy maintenance and reduce construction time, compared with in-situ concrete track. However, the concrete slabs being continuously connected in longitudinal direction, due to the temperature change between summer and winter, the openings at slab joints have occurred. Thus, in this study, to identify the cause of this opening of slab joint, the joint opening caused by temperature drop in the longitudinally continuous precast concrete slab track has been predicted using three-dimensional finite element analysis, and compared with field measurements. Based on the proven model, the slab joint opening, and the stress pattern of concrete slab and steel reinforcement according to concrete slab-base friction properties, concrete-reinforcement bond properties, and prestressing were analyzed.

  • PDF

A Study on the Optimization for Application of Elastomeric Bearing for Railway Bridge (탄성받침의 철도교량 적용을 위한 최적화에 관한 연구)

  • Kim, Hyo-Won;Kim, Hak-Goon;Son, Kyong-Wook;Choi, Dong-Chul;Yoon, Soon-Jong
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.815-820
    • /
    • 2011
  • The railway bridge of the domestic still has been used steel base such as sperical bearing and pot bearing widely. However, the bearing of steel series is occured corrosion frequently, reduced durability and raised maintenance cost excessively due to the nature of the material. If the elastomeric bearing which is widely used in highway bridge is applied to the railway bridge, it will be able to compensate this defect a lot. In order to apply to the railway bridge used for highway bridge, is needed the control of the bridge ends deflection, lateral displacement and negative reaction. Therefore, the elastomeric bearing can be applied to the railway bridge enough, if installed negative reaction key for control of the bridge ends deflection, improved shear wedge performance for control of the lateral force, adjust the thickness of the elastomeric pad for the minimize deflection, in addition, can be economic design of sub-structures due to damping effect.

  • PDF