• 제목/요약/키워드: Instability Criterion

검색결과 116건 처리시간 0.024초

STABILITY OF THE TWO-TEMPERATURE ACCRETION DISK

  • PARK MYEONG-GU
    • 천문학회지
    • /
    • 제28권1호
    • /
    • pp.97-107
    • /
    • 1995
  • The stability of the geometrically thin, two-temperature hot accretion disk is studied. The general criterion for thermal instability is derived from the linear local analyses, allowing for advective cooling and dynamics in the vertical direction. Specifically, classic unsaturated Comptonization disk is analysed in detail. We find five eigen-modes: (1) Heating mode grows in thermal time scale, $(5/3)({\alpha}{\omega})^{-1}$, where alpha is the viscosity parameter and w the Keplerian frequency. (2) Cooling mode decays in time scale, $(2/5)(T_e/T_i)({\alpha}{\omega})^{-1}$, where $T_e\;and\;T_i$ are the electron and ion temperatures, respectively. (3) Lightman-Eardley viscous mode decays in time scale, $(4/3)(\Lambda/H)^2({\alpha}{\omega})^{-1}$, where $\Lambda$ is the wavelength of the perturbation and H the unperturbed disk height. (4) Two vertically oscillating modes oscillate in Keplerian time scale, $(3/8)^{1/2}\omega^{-1}$ with growth rate $\propto\;(H/\Lambda)^2$. The inclusion of dynamics in the vertical direction does not affect the thermal instability, adding only the oscillatory modes which gradually grow for short wavelength modes. Also, the advective cooling is not strong enough to suppress the growth of heating modes, at least for geometrically thin disk. Non-linear development of the perturbation is followed for simple unsaturated Compton disk: depending on the initial proton temperature perturbation, the disk can evolve to decoupled state with hot protons and cool electrons, or to one-temperature state with very cool protons and electrons.

  • PDF

Study of stability and evolution indexes of gobs under unloading effect in the deep mines

  • Fu, Jianxin;Song, Wei-Dong;Tan, Yu-Ye
    • Geomechanics and Engineering
    • /
    • 제14권5호
    • /
    • pp.439-451
    • /
    • 2018
  • The stress path characteristics of surrounding rock in the formation of gob were analysed and the unloading was solved. Taking Chengchao Iron Mine as the engineering background, the model for analysing the instability of deep gob was established based on the mechanism of stress relief in deep mining. The energy evolution law was investigated by introducing the local energy release rate index (LERR), and the energy criterion of instability of surrounding rock was established based on the cusp catastrophe theory. The results showed that the evolution equation of the local energy release energy of the surrounding rock was quartic function with one unknown and the release rate increased gradually during the mining. The calculation results showed that the gob was stable. The LERR per unit volume of the bottom structure was relatively smaller, which mean the stability was better. The LERR distribution showed that there was main energy release in the horizontal direction and energy concentration in the vertical direction which meet the characteristics of deep mining. In summary, this model could effectively calculate the stability of surrounding rock in the formation of gob. The LERR could reflect the dynamic process of energy release, transfer and dissipation which provided an important reference for the study of the stability of deep mined out area.

변형 공정지도를 활용한 A350 LF2 소재의 고온 성형성 평가 (Evaluation of High Temperature Workability of A350 LF2 Using the Deformation Processing Map)

  • 정은정;김정한;이동근;박노광;이종수;염종택
    • 소성∙가공
    • /
    • 제15권4호
    • /
    • pp.333-339
    • /
    • 2006
  • Hot deformation behavior of a carbon steel (A350 LF2) was characterized by compression tests in the temperature range of $800-1250^{\circ}C$ and the strain rate range of $0.001-10s^{-1}$, The microstructural evolution during hot compression was investigated and deformation mechanisms were analyzed by constructing a deformation processing map. Processing maps were generated using the combination of dynamic material model (DMM) and flow instability theories based on the flow stability criteria and Ziegler's instability criterion. In order to evaluate the reliability of the map, the mirostructural characteristics of the hot compressed specimens were correlated with test conditions in the stable and unstable regime. The combined microstructural and processing map of A350 LF2 was applied to predict an optimum condition and unstable regions for hot forming.

대형 Ti-6Al-4V 합금의 Ring-Rolling 공정설계 (Ring-Rolling Design of a Large-Scale Ti-6Al-4V alloy)

  • 염종택;정은정;김정한;이동근;박노광;최승식;이종수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.373-376
    • /
    • 2006
  • The ring rolling design for a large-scale Ti-6Al-4V alloy ring was performed with a calculation method and FEM simulation. The ring rolling design includes geometry design and optimization of process variables. The calculation method was to determine geometry design such as initial billet and blank size, and final rolled ring shape. A commercial FEM code, SHAPE was used to simulate the effect of process variables in ring rolling on the distribution of the internal state variables such as strain, strain rate and temperature. In order to predict the forming defects during ring rolling, the process-map approach based on Ziegler's instability criterion was used with FEM simulation. Finally, an optimum process design to obtain sound Ti-6Al-4V rings without forming defects was suggested through combined approach of Ziegler's instability map and FEM simulation results.

  • PDF

강소성 유한요소법을 이용한 타원벌지시험의 이론 및 실험적 연구 (Theoretical and experimental study of elliptical bulge test by using a rigid plastic finite element method)

  • 정완진;양동열;한규택;백남주;김용진
    • 대한기계학회논문집
    • /
    • 제12권3호
    • /
    • pp.397-408
    • /
    • 1988
  • 본 연구에서는 세가지 형상비의 연강판타원벌지 시험에 대하여 다이반경부분 의 형상과 수직이방성을 고려하여 해석고 이에 따른 실험과 비교검토하여 타원벌지시 험에서의 변형특성에 대해 논의하고자 한다. 또 불안정현상이 일어나는 압력을 예측 하여 실험에서 구한 파괴압력과 비교하여 타원벌지 시험에서의 파괴특성을 고찰하고자 한다.

Draw resonance in polymer processing: a short chronology and a new approach

  • Hyun, Jae-Chun
    • Korea-Australia Rheology Journal
    • /
    • 제11권4호
    • /
    • pp.279-285
    • /
    • 1999
  • Draw resonance is both an important and interesting instability encountered in various extensional-deformation-dominated polymer processing operations. It is important because of its paramount relevance to the productivity and quality issue in the related industry: and it is interesting because of as yet unanswered questions as to what its cause and origin are in terms of physics involved. Specifically, a short chronological account of the draw resonance research is presented in this paper bringing several previous results together and focusing on the derivation of a new criterion for draw resonance based on the interaction of the traveling times of some kinematic waves propagating along the spinline from the die exit to the take-up position. The new explanation of draw resonance put forward here based on the physics of the system is seen to have wide implications on both theoretical and practical aspects of draw resonance instability. The importance of the role played by spinline tension in determining draw resonance is an example of the former whereas interpretation of the mechanism of the draw resonance eliminator is an example of the latter. Finally, an approximate yet a very fast and convenient method for determining draw resonance is also derived based on the above findings and found to agree well with the exact stability results.

  • PDF

전압의 주파수 편의를 이용한 동기탈조 검출 알고리즘에 관한 연구 (A Study on the Out-of-Step Detection Algorithm using Frequency Deviation of the Voltage)

  • 소광훈;허정용;김철환
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제53권3호
    • /
    • pp.175-181
    • /
    • 2004
  • The protection against transient instability and consequent out-of-step condition is a major concern for the utility industry. Unstable system may cause serious damage to system elements such as generators and transmission lines. Therefore, out-of-step detection is essential to operate a system safely. The detection of out-of-step is generally based upon the rate of movement of the apparent impedance. However such relay monitors only the apparent impedance which may not be sufficient to correctly detect all forms of out-of-step and cannot cope with out-of-step for a more complex type of instability such as very fast power swing. This paper presents the out-of-step detection algorithm using voltage frequency deviation. The digital filters based on discrete Fourier transforms (DFT) to calculate the frequency of a sinusoid voltage are used, and the generator angle is estimated using the deviation of the calculated frequency component of the voltage. The proposed out-of-step algorithm is based on the assessment of a transient stability using equal area criterion. The proposed out-of-step algorithm is verified and tested by using EMTP MODELS.

Ti-6Al-4V 합금의 대형 링 압연공정설계 (Process Design for Large-Scale Ring-Rolling of Ti-6Al-4V Alloy)

  • 염종택;김정한;이동근;박노광;최승식;이종수
    • 소성∙가공
    • /
    • 제16권3호
    • /
    • pp.172-177
    • /
    • 2007
  • The process design for large-scale ring rolling of Ti-6Al-4V alloy was performed by calculation method, processing map approach and FEM simulation. The ring rolling design includes geometry design and optimization of process variables. The calculation method was used to make geometry design such as initial billet and blank sizes, and final rolled ring shape. A commercial FEM code, SHAPE-RR was used to simulate the effect of process variables in ring rolling on the distribution of the internal state variables such as strain, strain rate and temperature. In order to predict the forming defects during ring rolling and the formation of over-heating above $\beta$-transus temperature due to deformation heating, the process-map approach based on Ziegler's instability criterion was used with FEM simulation. Finally, an optimum process design to obtain sound Ti-6Al-4V rings without forming defects was suggested through combined approach of Ziegler's instability map and FEM simulation results.

A Novel SIME Configuration Scheme Correlating Generator Tripping for Transient Stability Assessment

  • Oh, Seung-Chan;Lee, Hwan-Ik;Lee, Yun-Hwan;Lee, Byong-Jun
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권5호
    • /
    • pp.1798-1806
    • /
    • 2018
  • When a contingency occurs in a large transmission route in a power system, it can generate various instabilities that may lead to a power system blackout. In particular, transient instability in a power system needs to be immediately addressed, and preventive measures should be in place prior to fault occurrence. Measures to achieve transient stability include system reinforcement, power generation restriction, and generator tripping. Because the interpretation of transient stability is a time domain simulation, it is difficult to determine the efficacy of proposed countermeasures using only simple simulation results. Therefore, several methods to quantify transient stability have been introduced. Among them, the single machine equivalent (SIME) method based on the equal area criterion (EAC) can quantify the degree of instability by calculating the residual acceleration energy of a generator. However, method for generator tripping effect evaluation does not have been established. In this study, we propose a method to evaluate the effect of generator tripping on transient stability that is based on the SIME method. For this purpose, the measures that reflect generator tripping in the SIME calculation are reviewed. Simulation results obtained by applying the proposed method to the IEEE 39-bus system and KEPCO system are then presented.

유한요소법과 FLSD를 이용한 관재 하이드로포밍 공정에서의 성형 한계 예측 (Forming Limit Prediction in Tube Hydroforming Processes by Using the FEM and FLSD)

  • 김상우;김정;이정환;강범수
    • 소성∙가공
    • /
    • 제14권6호
    • /
    • pp.527-532
    • /
    • 2005
  • Among the failure modes which can occur in tube hydroforming such as wrinkling, bursting or buckling, the bursting by local instability under excessive tensile stresses is irrecoverable phenomenon. Thus, the accurate prediction of bursting condition plays an important role in producing the successfully hydroformed part without any defects. As the classical forming limit criteria, strain-based forming limit diagram (FLD) has widely used to predict the failure in sheet metal forming. However, it is known that the FLD is extremely dependant on strain path throughout the forming process. Furthermore, The application of FLD to hydroforming process, where strain path is no longer linear throughout forming process, may lead to misunderstanding for fracture initiation. In this work, stress-based forming limit diagram (FLSD), which is strain path-independent and more general, was applied to prediction of forming limit in tube hydroforming. Combined with the analytical FLSD determined from plastic instability theory, finite element analyses were carried out to find out the state of stresses during hydroforming operation, and then FLSD is utilized as forming limit criterion. In addition, the approach is verified by a series of bulge tests in view of bursting pressure and shows a good agreement. Consequently, it is shown that the approach proposed in this paper will provide a feasible method to satisfy the increasing practical demands for judging the forming severity in hydroforming processes.