• Title/Summary/Keyword: Insolation Simulation

Search Result 67, Processing Time 0.022 seconds

A Study On The Maximum Power Point Tracking Simulation of Photovoltaic Solar Cell (PV용 Solar cell의 MPPT 시뮬레이션에 관한 연구)

  • Jeong, B.H.;Lee, K.Y.;Cho, G.B.;Baek, H.L.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05c
    • /
    • pp.17-20
    • /
    • 2004
  • PV model is presented based on the shockley diode equation. The simple model has a photo-current source, an single diode junction and a series resistance and includes temperature dependences. An accurate PV module electrical model is presented, matching with boost converter MPPT strategy and demosntarted in Matlab for a typical general purpose solar cell. Given solar insolation and temperature, the model returns current vector and MPP.

  • PDF

A Study on the Optimal PV-module Design for Efficiency Improvement of Photovoltaic System (태양광발전시스템의 효율 향상을 위한 태양전지 모듈의 최적 설계에 관한 연구)

  • Kim, Min;Lee, Gi-Je;Lee, Jin-Seop
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.328-330
    • /
    • 2001
  • The construct of photovoltaic module array, main power source of photovoltaic system, is very important to the efficiency improvement of whole photovoltaic system. Photovoltaic modules are usually connected in series or parallel to meet power capacity required. Since output characteristics of a photovoltaic module are greatly fluctuated on the variation of insolation, temperature and its type, the maximum open circuit voltage and output operating voltage of photovoltaic module array must exist in the admissible input voltage range of inverter system under any operating conditions. In this paper, we present the selection and array method of photovoltaic modules through simulation for the coupling loss reduction between photovoltaic modules and a inverter.

  • PDF

A Novel Voltage Control MPPT Algorithm using Variable Step Size based on P&O Method (가변 스텝 P&O 기반 전압제어 MPPT 알고리즘에 관한 연구)

  • Kim, Jichan;Cha, Hanju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.1
    • /
    • pp.29-36
    • /
    • 2020
  • In this study, a variable step algorithm is proposed on the basis of the perturb and observe method. The proposed algorithm can follow the maximum power point (MPP) quickly when solar irradiance changes rapidly. The proposed technique uses the voltage change characteristic at the MPP when the environment changes because of insolation or temperature. The MPP is tracked through the voltage control using a variable step method. This method determines the sudden change of solar irradiance by setting the threshold value and operates in fast tracking mode to track the MPP rapidly. When the operation point reaches the MPP, the mode switches to the variable step mode to minimize the steady state error. In addition, the output disturbance is decreased through the optimization of the control method design. The performance of the proposed MPPT algorithm is verified through simulation and experiment.

Virtual-Implemented Solar Cell System with New Cell Model (새로운 태양전지 모델을 이용한 태양전지 가상구현 시스템)

  • Jeong, Byung-Hwan;Lee, Sang-Yong;Oh, Bang-Won;Jeon, Yoon-Suk;Choe, Gyu-Ha
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1374-1376
    • /
    • 2003
  • The output of solar cell or array depends on the weather conditions such as cell temperature and insolation level. If the output of the photovoltaic system would be regularly generated under any weather conditions, it is so easy to develop the inverter, its related system, and also control algorithm. This can be performed by the VISC(virtual-implemented solar cell) system studied in this paper. And a few I-V curves are provided by the manufacturers, and so any I-V value between the given curves is unknown. The new model for solar cell is proposed which is based on the interpolation. Both simulation and experiment are executed to show the validity of the proposed VISC system.

  • PDF

Improved Global Maximum Power Point Tracking Technique Using Output Characteristics of Solar Array (태양광 어레이의 출력 특성을 이용한 개선된 전역 최대전력 점 추종 기법)

  • Yoo, Koo-Hyun;Lee, Woo-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.2
    • /
    • pp.111-117
    • /
    • 2020
  • The photovoltaic module has the characteristic that the output power varies according to the amount of insolation. If partial shading occurs in an environment composed of an array, a number of local maximum power points (LMPPs) may be generated according to the shading state. Photovoltaic arrays require global maximum power point tracking due to variations in output characteristics caused by solar radiation and temperature. Conventional algorithms, such as P&O and Incond, do not follow the global maximum power point in a partial shaded solar array. In this study, we propose a technique to follow the global maximum power point by using the correlation of voltage, current, and power in solar arrays. The proposed control technique 2qw validated through simulation and experiments by constructing a 2-kW solar system.

Comparison of MPPT Control Method Characteristic for Stand-alone PV System (독립형 태양광 발전시스템의 MPPT 제어기법 특성비교)

  • Lee, Yong-Sik;Kim, Nam-In;Jeong, Sung-Won;Gim, Jae-Hyeon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.1
    • /
    • pp.75-79
    • /
    • 2012
  • Maximum power point tracking(MPPT) techniques are used in photovoltaic systems to maximize the PV array output power by tracking continuously the maximum power point which depends on panels temperature and on irradiance conditions. This paper proposes a variable step size MPPT algorithm which can improve the MPPT speed and accuracy. Depending on insolation and temperature, the MPPT controller gives optimized step size. The effectiveness of the proposed system is verified thorough PSIM simulation and experiments on a 50[W] prototype. The experimental results confirm that the PV power of the improved P&O method is higher than that of the traditional P&O method.

A Study on the Optimal Water Flow Rate of the Solar Heating System (태양열 난방시스템의 최적 유량에 관한 연구)

  • Seong, Kwan-Jae;Kim, Hyo-Kyung
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.12 no.1
    • /
    • pp.2-11
    • /
    • 1983
  • The solar energy retention rate of a flat plate collector can be increased by increasing water flow rate through the collector which also increases the pumping energy incurred in obtaining that solar energy. The problem of optimal flow rate is formulated to fit within the framework of pontryagin's maximum principle and with a few simplifying assumptions, an optimal solution that can be easily implemented is obtaincd, The optimal solution is used in the simulation of a solar heating system using actual climatological data and the results are compared with that of on-off control. The result that not only the object function but, In some cases, also the solar energy retention rate the collector is increased. In is also found that the optimal control gets more advantageous as the solar insolation level gets lower, and also as tile cost of auxiliary heating fuel gets higher.

  • PDF

Computer Simulation of Lower Farmland by the Composition of an Agrophotovoltaic System (영농형 태양광 발전 시스템 구성에 따른 하부 농지 일사량의 전산모사 연구)

  • Kim, DeokSung;Kim, ChangHeon;Park, JongSung;Kim, ChangHan;Nam, JaeWoo;Cho, JaiYoung;Lim, CheolHyun
    • New & Renewable Energy
    • /
    • v.16 no.1
    • /
    • pp.41-46
    • /
    • 2020
  • The share of agrophotovoltaics in the "renewable energy 3020", which is the Korean government policy for revitalizing new and renewable energy, is increasing gradually. In this study, the distribution of solar radiation received by crops growing on virtual farmland under a range of conditions, such as module height, module angle, shading ratio, and module type, was quantified and analyzed using an Ecotect program, which allows insolation analysis during the period from spring to fall. As the module angle increases, transmissive modules increase the amount of solar radiation delivered to the lower farmland. In addition, the difference between 3x12 Cell Type and 4x9 Cells Type, which are types of photovoltaic modules used in practice, was found to be small. The analysis results can be used as a design standard for the future establishment of agrophotovoltaic systems.

Study of DC-DC Converter with Continuous output Current for Battery Charger (배터리 충전기를 위한 연속전류를 갖는 DC-DC 컨버터에 관한 연구)

  • Bayasgalan, Bayasgalan;Kim, Hong-Sung;Kim, Young-Sik;Lee, Young-Jin;Zayabaatar, Zayabaatar;Choe, Gyu-Ha
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.193-195
    • /
    • 2008
  • This paper proposed dc-dc converter with continuous output current for battery charger. If we charge energy storage device by conventional boost converter, current flows into the discontinuous and as a result reduces the life-time of battery. The output voltage of dc-dc converter should be higher than voltage of across the battery, specially if charging by PV there is a fluctuation of voltage due change of insolation and temperature, therefore will boost and regulate this voltage. The proposal converter includes forward converter and the output voltage of the proposal converter looks like an input voltage and forward output voltage's add. This topology was tested on simulation and experimentation. Simulation and experimentation results indicated that the proposal topology is useful for battery charging because the output current of the converter flows continuously and perfectly.

  • PDF

A Real-Time Simulation Method for Stand-Alone PV Generation Systems using RTDS (RTDS를 이용한 단독운전 태양광 발전시스템의 실시간 시뮬레이션)

  • Kim, Bong-Tae;Lee, Jae-Deuk;Park, Min-Won;Seong, Ki-Chul;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2001.05a
    • /
    • pp.190-193
    • /
    • 2001
  • In order to verify the efficiency or availability and stability of photovoltaic(PV) generation systems, huge system apparatuses are needed, in general, in which an actual size of solar panel, a type of converter system and some amount of load facilities should be installed in a particular location. It is also hardly possible to compare a Maximum Power Point Tracking (MPPT) control scheme with others under the same weather and load conditions in an actual PV generation system. The only and a possible way to bring above-mentioned problem to be solved is to realize a transient simulation scheme for PV generation systems using real weather conditions such as insolation and surface temperature of solar cell. The authors, in this paper, introduces a novel simulation method, which is based on a real-time digital simulator (RTDS), for PV generation systems under the real weather conditions. Firstly, VI characteristic equation of a solar cell is developed as an empirical formula and reconstructed in the RTDS system, then the real data of weather conditions are interfaced to the analogue inputs of the RTDS. The outcomes of the simulation demonstrate the effectiveness of the proposed simulation scheme in this paper. The results shows that the cost effective verifying for the efficiency or availability and stability of PV generation systems and the comparison research of various control schemes like MPPT under the same real weather conditions are possible.

  • PDF