랜섬웨어(ransomware)는 사용자 데스크톱의 파일들을 암호화한 뒤, 복호화 비용을 요구하는 악성 프로그램이다. 랜섬웨어 공격의 빈도와 피해금액은 매년 증가하고 있기 때문에 랜섬웨어 예방과 탐지 및 복구 시스템이 필요하다. 본 논문에서는 Baek 등이 제안한 랜섬웨어 탐지 알고리즘인 SSD-Insider가 덮어쓰기 검사를 위해 사용하는 해시테이블을 블룸 필터로 교체한 AdvanSSD-Insider 알고리즘을 제안한다. 실험 결과 AdvanSSD-Insider 알고리즘은 SSD-Insider 알고리즘에 비해 메모리 사용량이 최대 90%, 수행시간이 최대 77% 감소하였고 동일한 탐지 정확도를 얻었다. 또한 SSD-Insider 알고리즘과 동일한 조건의 메모리 사용량으로 AdvanSSD-Insider 알고리즘은 10배 더 긴 시간을 관찰할 수 있으며, 이를 통해 기존에 탐지하기 어려웠던 랜섬웨어에 대해 탐지 정확도가 증가하는 결과를 얻었다.
본 논문에서는 유비쿼터스 컴퓨팅 환경에서 내부자가 합법적인 권한을 이용하여 불법적인 정보 유출 행위를 차단하는 접근통제 모델 IM-ACM(Insider Misuse-Access Control Model)을 제안하였다. IM-ACM은 상황역할과 개체의 보안속성을 활용하여 보안성을 강화시킨 CA-TRBAC(Context Aware-Task Role Based Access Control)에 오용 모니터 기능을 추가하여 내부자가 데이터를 올바르게 사용하는지 감시한다. 내부자에 의한 정보 유출은 합법적인 접근권한, 접근시스템에 대한 풍부한 지식 등의 내부자의 특성으로 인해 차단하기가 곤란하다. IM-ACM은 CA-TRBAC의 장점인 상황과 보안속성을 이용하여 서로 상이한 보안등급의 객체간 정보 흐름을 방지하고 오용 모니터를 활용하여 내부자의 실제 진행 프로세스를 최근 역할, 직무와 작업 프로세스 패턴 프로파일과 비교하여 내부자의 오용행위을 차단한다.
본 연구는 유출위협 탐지 연구에 활용되는 유출위협 데이터 셋의 한계점을 분석하고 현재의 문제를 극복하기 위해 보안솔루션을 활용하여 공개된 유출위협 데이터와 비교 분석한다. 이를 통해 유출위협 탐지에 적합한 데이터 포맷을 설계하고 블록체인 기술을 사용하여 서로 다른 기관 및 기업 간 유출위협 정보를 안전하게 공유할 수 있는 시스템을 구현한다. 현재 연구원들에게 공개된 유출위협 데이터 셋에서 실제 사건을 기반으로 수집한 데이터 셋은 없다. 공개된 데이터 셋은 연구를 위해 임의로 만들어진 가상의 합성데이터로 학습모델로 사용 시 실제 환경에서의 많은 한계점이 존재한다. 본 연구에서는 이러한 한계점들을 개선하기 위해서 프라이빗 블록체인 설계하여 소속이 다른 기관끼리 안전한 정보공유를 위해 참여자 간 합의와 검증을 통해 신뢰성을 높이고 정보의 무결성과 정합성을 유지하는 방안을 도출하였다. 제시한 방법은 유출위협 수집기를 통해 데이터를 수집하고 블록체인 기반 공유 시스템을 통해 합성데이터가 아닌 실제 위협을 가했던 양질의 데이터 셋을 수집하여 현재의 유출위협 데이터 셋 문제를 해결하고 향후 내부자 유출위협 탐지 모델에 기여할 것으로 사료된다.
내부자 거래란 내부자, 즉 회사의 기업 비밀이나 영업 비밀을 다루고 있는 회사에 속한 관리직 또는 경영의 위치에 있는 특수 관계자들이 자신들의 지위를 이용하여 일반 대중에게 공표되지 않은 이런 기밀을 통해 사전에 주식을 매수하거나 매도함으로써 특별한 이득을 얻는 것을 뜻하다. 여기에는 회사가 공개하지 않고 비밀리에 진행하고 있는 기업 인수합병, 증자 및 감자 계획, 신주 발행, 자산재평가 실시, 회사의 신규투자 계획, 회사의 강제 폐업 등과 같은 비밀 정보들이 포함될 수 있다. 그리고 이들은 이런 정보를 선점하여 주식 거래를 하거나 회사의 지분을 확보함으로써 상당한 부당 이득을 실현할 수 있다. 이런 까닭에 비내부자, 즉 내부 정보를 알고 있지 못하는 회사 고용인 및 일반 투자자는 커다란 손실을 입을 수도 있다. 왜냐하면 통상의 일반 투자자는 이들보다 훨씬 더 숫자는 많겠지만 정보 입수 면에 있어서 아주 열악한 위치에 있는 게 보통이며, 특히 그것이 영업 비밀이나 기업 비밀에 속하는 회사의 내부 정보일 경우 이를 인지하기란 사실상 불가능할 것이기 때문이다. 이 논문은 내부자 거래의 이러한 윤리적 문제점들을 적극 조명하는 일에 관심을 두고 있다. 그리고 그러한 것들이 왜 문제인지에 대한 윤리적 근거를 밝혀 내부자 거래의 부당함을 드러내는 일에 초점을 맞추고 있다. 다시 말해, 이 논문은 내부자 거래를 불공정 거래 행위로 규정할 만한 분명한 윤리적 근거를 제시하고, 이를 통해 내부자 거래를 불법으로 규정하는 데 하등 문제가 없음을 공론화하는 데 그 목적이 있다. 내부자 거래의 부당함에 대한 이 같은 논의를 이끌고 있는 윤리적 문제는 다음과 같다. 즉, 내부자 거래는 부당하게 누군가의 이득을 편취한 것이며, 자유 시장의 공정한 경쟁을 허물어뜨린 것이며, 정보 입수의 기회에 대한 불공정성 문제를 일으키는 사안이다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제11권10호
/
pp.5062-5079
/
2017
Malicious insider threats have increased recently, and methods of the threats are diversifying every day. These insider threats are becoming a significant problem in corporations and governments today. From a technology standpoint, detecting potential insider threats is difficult in early stage because it is unpredictable. In order to prevent insider threats in early stage, it is necessary to collect all of insiders' data which flow in network systems, and then analyze whether the data are potential threat or not. However, analyzing all of data makes us spend too much time and cost. In addition, we need a large repository in order to collect and manage these data. To resolve this problem, we develop an indicator-based behavior ontology (IB2O) that allows us to understand and interpret insiders' data packets, and then to detect potential threats in early stage in network systems including social networks and company networks. To show feasibility of the behavior ontology, we developed a prototype platform called Insider Threat Detecting Extractor (ITDE) for detecting potential insider threats in early stage based on the behavior ontology. Finally, we showed how the behavior ontology would help detect potential inside threats in network system. We expect that the behavior ontology will be able to contribute to detecting malicious insider threats in early stage.
최근 클라우드 및 원격 근무 환경의 비중이 증가함에 따라 다양한 정보보안 사고들이 발생하고 있다. 조직의 내부자가 원격 접속으로 기밀 자료에 접근하여 유출을 시도하는 사례가 발생하는 등 내부자 위협이 주요 이슈로 떠오르게 되었다. 이에 따라 내부자 위협을 탐지하기 위해 기계학습 기반의 방법들이 제안되고 있다. 하지만, 기존의 내부자 위협을 탐지하는 기계학습 기반의 방법들은 편향 및 분산 문제와 같이 예측 정확도와 관련된 중요한 요소를 고려하지 않았으며 이에 따라 제한된 성능을 보인다는 한계가 있다. 본 논문에서는 편향 및 분산을 고려하는 부스팅 유형의 앙상블 학습 알고리즘들을 사용하여 악의적인 내부자 탐지 성능을 확인하고 이에 대한 면밀한 분석을 수행하며, 데이터셋의 불균형까지도 고려하여 최종 결과를 판단한다. 앙상블 학습을 이용한 실험을 통해 기존의 단일 학습 모델에 기반한 방법에서 나아가, 편향-분산 트레이드오프를 함께 고려하며 유사하거나 보다 높은 정확도를 달성함을 보인다. 실험 결과에 따르면 배깅과 부스팅 방법을 사용한 앙상블 학습은 98% 이상의 정확도를 보였고, 이는 사용된 단일 학습 모델의 평균 정확도와 비교하면 악의적인 내부자 탐지 성능을 5.62% 향상시킨다.
Firms pay cash dividends to reduce the agency costs, and then insider stock ownership affects the dicision of dividend payout ratio. In this study, it is tested that firm's insider stock ownership affects the decision of dividend payout ratio, but the relation between dividend payout ratio and insider stock ownership is nonmonostic. The empirical evidence shows that at low levels of insider stock ownership, increase in the percentage of stock held by insiders decreases dividend payout ratio, but beyond the point of entrenchment increase in the percentage of stock held by insiders increases dividend payout ratio. Thus, the dividend payout ratio and the percentage of stock held by insiders are in a parabolic relation. This implies that there may be a optimal insider stock ownership In lead to the minimun dividend payout ratio.
KSII Transactions on Internet and Information Systems (TIIS)
/
제12권4호
/
pp.1887-1898
/
2018
In this paper, a method to classify insider threat activity is introduced. The internal threats help detecting anomalous activity in the procedure performed by the user in an organization. When an anomalous value deviating from the overall behavior is displayed, we consider it as an inside threat for classification as an inside intimidator. To solve the situation, Markov Chain Model is employed. The Markov Chain Model shows the next state value through an arbitrary variable affected by the previous event. Similarly, the current activity can also be predicted based on the previous activity for the insider threat activity. A method was studied where the change items for such state are defined by a transition probability, and classified as detection of anomaly of the inside threat through values for a probability variable. We use the properties of the Markov chains to list the behavior of the user over time and to classify which state they belong to. Sequential data sets were generated according to the influence of n occurrences of Markov attribute and classified by machine learning algorithm. In the experiment, only 15% of the Cert: insider threat dataset was applied, and the result was 97% accuracy except for NaiveBayes. As a result of our research, it was confirmed that the Markov Chain Model can classify insider threats and can be fully utilized for user behavior classification.
In the legislation interpretation and fundamental viewpoint about the legal system of insider trading, Japan strictly legislate under the proposition, the principle of 'nulla poena,' adopted 'the principle of limited enumeration,' and United states, under 'the principle of comprehension,' has entrusted courts with establishment of concrete concepts and standard, so the courts are very flexible in determining the range of insiders and the importance of inside information to show a strong will to eradicate insider trading. Korea has a legislative position of 'the principle of limited indication' which has been created by the negotiation between those principles of United states and Japan. Though this court has interpreted insider trading, insider trading using non-disclosed information has increased lately, needing the strengthening of its regulations. However, this shows us that sophisticate the regulations may be, the exposure of insider trading has limitations. The most important thing is to change recognition for transparency of the securities market, security of investors and to establish the atmosphere which is that fair stock trading made in a sound capital market to raise funds for corporation. The policies of improving unfair trading, self-regulation bodies, raising the transparency and legality of procedures of supervision and monitoring and applying 'compliance program' to stock companies are very needed to eliminate unfair trading in the securities market and establish the order of trading.
정보보호 분야 중 내부자 위협은 미국 카네기멜런대학 부설 연구소를 중심으로 연구가 꾸준히 이어오고 있을 정도로 중요도가 높다. 이에 반해 우리는 별도 연구기관이 없는 실정이며, 특히 국가 생존과 직결되는 국방 IT 환경에 대한 내부자 위협 연구가 보다 깊이 있게 진행되고 있지 않은 것이 현실이다. 그뿐만 아니라 군의 특수성으로 인해 국방 IT 보안은 학문으로서의 연구가 제한되며, 따라서 개념에 대한 정립조차도 제대로 이루어지지 못하고 있다. 뿐만아니라 환경의 차이로 인해 미국의 기준을 그대로 빌릴 수 없기 때문에, 본 논문에서는 국방 IT 환경을 분석한 뒤 한국군 환경에 적합한 내부자(위협)를 정의하고, 내부자 위협 종류 및 완화방안에 대해 제안해 보고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.