• Title/Summary/Keyword: Inside heat exchanger

Search Result 161, Processing Time 0.024 seconds

The Development of fault Monitoring System in Internal Heat Exchanger (열교환기 내부의 결함 감시 시스템 개발)

  • Kim, Gwan-Hyung;Jeong, Hoi-Seong;Lee, Hyung-Ki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.552-553
    • /
    • 2012
  • 현재의 발전소 내부에 가동 중인 열교환기 배관 라인의 Clinker Monitoring System은 초고온의 열교환기 내부의 벽면 및 배관라인의 클링커 상태를 감시하는 시스템을 요구하고 있다. 이러한 열교환기 내부의 상태를 감시하기 위하여 초고온에 견딜 수 있고 회전이 가능한 장치를 열교환기 내부에 투입하여 회전 가능한 장치를 통하여 원격으로 영상을 전송하도록 하여 클링커 상태를 영상으로 모니터링 하여 열교환기 내부의 상태를 감시 관찰 분석할 수 있는 시스템을 구성하였다. 본 논문에서는 발전설비의 열교환기 내부의 클링커 상태를 모니터링 할 수 있도록 회전 가능한 렌즈 튜브와 보호용 냉각 시스템을 추가된 통합 모니터링 시스템을 제기하고자 한다.

  • PDF

Highly Efficient PIV Measurement of Complex Flows Using Refractive Index Matching Technique

  • NISHINO Koichi;KAWAGUCHI Daisuke;KOSUGI Takashi;ISODA Haruo
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.57-63
    • /
    • 2004
  • various applications is presented. It is based on rapid-prototyping of transparent model for flow visualization and on the use of refractive index matching that enables efficient and clear visualization of the flow inside the model. The model is immersed in the index-matching fluid in a glass tank so that any displacement and rotation of the model in the tank have no influence on the optical setup for image acquisition to be made through a glass wall. This can facilitate greatly the camera calibration for stereo PIV and 3-D PTV. As the flow model is generated directly from 3-D surface data, no laborious preparation of the flow model is needed. This approach for seamless linking of model generation and PIV measurement is applicable to various flow measurements in automobile, ship building, fluid machinery, turbine, electrical appliances, heat exchanger, electronic cooling, bio-engineering and so on.

  • PDF

A Phenomenological Review on the Damage of Hot Gas Parts caused by Explosion of Gas Turbine Cooling System (가스터빈 내부 냉각계통 발화에 의한 고온부품 손상의 현상학적 고찰)

  • Yu, Won-Ju;Lee, Seong-Hyun
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2010.04a
    • /
    • pp.81-95
    • /
    • 2010
  • Gas turbines generating power operate in high temperature condition and use natural gas as fuel. For that reason, there are many cases where damage is done to the hot gas parts caused by the high temperature and many accidents occur like gas explosions, then various efforts are needed to maintain the hot gas parts and prevent accidents. It is difficult to find the root causes of damage to the hot gas parts from the gas explosion caused by gas leakage through rotor cooling air line from fuel gas heat exchanger during the shut down. To prevent gas turbine from damage, removal of gas leakage inside of gas turbine is required by purging the turbine before firing, improving the fuel gas heating system and installing alarm systems for detecting gas leakage from stop valve to turbine while the gas turbine has shut down.

  • PDF

Heat Transfer and Pressure Drop Characteristics of Supercritical $CO_2$ in a Helically Coiled Tube (초임계 $CO_2$의 헬리컬 코일관 내 열선단과 압력강하 특성)

  • Yu, Tae-Guen;Kim, Dae-Hui;Son, Chang-Hyo;Oh, Hoo-Kyu
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.353-358
    • /
    • 2005
  • The heat transfer and pressure drop of supercritical $CO_2$ cooled in a helically coiled tube was investigated experimentally. The experiments were conducted without oil in the refrigerant loop. The experimental apparatus of the refrigerant loop consist of receiver, a variable speed pump, a mass flowmeter, a pre-heater, a gas cooler(test section) and an isothermal tank. The test section is a helically coiled tube in tube counter flow heat exchanger with $CO_2$ flowed inside the inner tube and coolant( water) flowed along the outside annular passage, It was made of it copper tube with the inner diameter of 4.55[mm]. the outer diameter of 6.35 [mm] and length of 10000 [mm]. The refrigerant mass fluxes were $200^{\sim}600$ [kg/m2s] and the inlet pressure of gas cooler varied from 7.5 [MPa] to 10.0 [MPa]. The main results are summarized as follows : The heat transfer coefficient of supercritical $CO_2$ increases, as the cooling pressure of gas cooler decreases. And the heat transfer coefficient increases with the increase of the refrigerant mass flux. The pressure drop decreases in increase of the gas cooler pressure and increases with increase the refrigerant mass flux.

  • PDF

Cooling Performance Study of a Impinging Water Jet System with Heat Sink for High Power LEDs (분사냉각모듈 내에 부착된 히트싱크에 따른 고출력 LED의 냉각성능에 관한 연구)

  • Ku, G.M.;Kim, K.;Park, S.H.;Choi, S.D.;Heo, J.W.
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.6
    • /
    • pp.152-158
    • /
    • 2013
  • The purpose of this study is to investigate cooling performance of high power LEDs from 100 to 200 W class by using a jet impingement cooling module. The numerical analysis of forced convection cooling inside cooling module is carried out using a multi-purpose CFD software, FLUENT 6.3. In the experiments, the LED cooling system consists of jet impingement module, heat exchanger, water reservoir, and pump. In the present study, the cooling performance of jet impingement cooling module is investigated to determine the effect of the heat sink types on the impinging surface, the space and length of fins. Numerical and experimental studies show the reasonable agreement of LED metal PCB temperature between those results and give the optimized design parameters such as the space of fin and the length of fin. Also, the pin fin type of heat sink is found to be more efficient than the plate type heat sink in jet impingement cooling.

Finite Element Analysis and Validation for Dimpled Tube Type Intercooler Using Homogenization Method (균질화 기법을 이용한 딤플 튜브형 인터쿨러의 유한요소해석 및 검증)

  • Lee, Hyun-Min;Heo, Seong-Chan;Song, Woo-Jin;Ku, Tae-Wan;Kang, Beom-Soo;Kim, Jeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.2
    • /
    • pp.153-161
    • /
    • 2009
  • Three-dimensional finite-element methods(FEM) have been used to analyze the thermal stress of an exhaust gas recirculation(EGR) cooler due to thermal and pressure load. Since efficiency and capability of the heat exchanger are mainly dependent on net heat transferring area of the EGR cooler system, the tube inside the system has a numerous dimples on the surface. Thus for finite element analysis, firstly the dimple-typed tube is modeled as a plain element without the dimple, and then the equivalent thermal conductivities and elastic modulus are calculated. This work describes the numerical homogenization procedure of the dimple-typed tube and verifies the equivalent material properties by comparison of a single unit and the actual full model. Finally, the homogenization scheme presented in this study can be efficiently applied to finite element analyses for the thermal stress and deformation behavior of the EGR cooler system with the dimple-typed tube.

Prediction of density and viscosity for $CO_2$-oil mixture at low oil concentration (낮은 오일 농도에서 $CO_2$-Oil 혼합물의 밀도와 점성예측)

  • Yun, Rin
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.136-141
    • /
    • 2008
  • Due to environmental concerns $CO_2$ has been reintroduced as a potential candidate to replace HFCs in refrigeration systems since 1990s. In a refrigeration cycle, oil is utilized in lubricating a compressor. However, although oil separators are installed after a compressor oil is prone to leak to the whole system. The mixing of $CO_2$ and oil, even a small amount of oil, the heat transfer performance in heat exchanger deteriorated and the pressure drop inside tube increases. Therefore, it is needed to precisely estimate the mixture thermodynamic properties of $CO_2$-lubricant oil to correctly design a $CO_2$ refrigeration system. The commonly used method in estimating the mixture properties is the mole based weighting model. However, the accuracy of the method can not be assured. In the present study, $CO_2$-lubricant oil mixture properties including viscosity and density were estimated by using the mixture models, based on the equation of state (EOS).

  • PDF

Optimal design of passive containment cooling system for innovative PWR

  • Ha, Huiun;Lee, Sangwon;Kim, Hangon
    • Nuclear Engineering and Technology
    • /
    • v.49 no.5
    • /
    • pp.941-952
    • /
    • 2017
  • Using the Generation of Thermal-Hydraulic Information for Containments (GOTHIC) code, thermal-hydraulic phenomena that occur inside the containment have been investigated, along with the preliminary design of the passive containment cooling system (PCCS) of an innovative pressurized water reactor (PWR). A GOTHIC containment model was constructed with reference to the design data of the Advanced Power Reactor 1400, and report related PCCS. The effects of the design parameters were evaluated for passive containment cooling tank (PCCT) geometry, PCCS heat exchanger (PCCX) location, and surface area. The analyzed results, obtained using the single PCCT, showed that repressurization and reheating phenomena had occurred. To resolve these problems, a coupled PCCT concept was suggested and was found to continually decrease the containment pressure and temperature without repressurization and reheating. If the installation level of the PCCX is higher than that of the PCCT, it may affect the PCCS performance. Additionally, it was confirmed that various means of increasing the external surface area of the PCCX, such as fins, could help improve the energy removal performance of the PCCS. To improve the PCCS design and investigate its performance, further studies are needed.

Problem Solving about Practical Engineering Education based on Analysis on Optimized Internal Flow of LTP Furnace and Uniformity of Temperature (LTP 퍼니스의 내부 유동 및 온도 균일도 최적화를 위한 실천공학교육적 문제해결)

  • Kim, Jin-woo;Youn, Gi-man;Jo, Eunjeong
    • Journal of Practical Engineering Education
    • /
    • v.10 no.2
    • /
    • pp.125-129
    • /
    • 2018
  • This paper is about the numerical analysis on optimized internal flow of LTP furnace and uniformity of temperature. The LTP Furnace is the device that generates heat by electricity. And performs an annealing function for annealing the silicon wafer in the pre-semiconductor manufacturing process. Especially, the maximum temperature inside the chamber is maintained at a high temperature of about $400^{\circ}C$ to strengthen the wafer. When the process is completed at high temperature, the operation is repeated to reduce the temperature through the heat exchanger and carry it out. From this analysis, the ultimate goal is to derive the optimum design of the insulation volume supply/exhaust structure of the chamber through the flow analysis of the LTPS furnace. And to find cases for curriculum development.

Evaluation on Thermal Performance Along with Constructability and Economic Feasibility of Large-diameter Cast-in-place Energy Pile (대구경 현장타설 에너지파일의 열교환 성능과 시공성 및 경제성 분석)

  • Park, Sangwoo;Sung, Chihun;Lee, Dongseop;Jung, Kyoungsik;Choi, Hangseok
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.5
    • /
    • pp.5-21
    • /
    • 2015
  • An energy pile is a novel type of ground heat exchangers (GHEX's) which sets up heat exchange pipes inside a pile foundation, and allows to circulate a working fluid through the pipe for exchanging thermal energy with the surrounding ground stratum. Using existing foundation structure, the energy pile can function not only as a structural foundation but also as a GHEX. In this paper, six full-scale energy piles were constructed in a test bed with various configurations of the heat exchange pipe inside large-diameter cast-in-place piles, that is, three parallel U-type heat exchangers (5, 8 and 10 pairs), two coil type heat exchangers (with a 500 mm and 200 mm pitch), and one S-type heat exchanger. During constructing the energy piles, the constructability of each energy pile was evaluated with consideration of the installation time, the number of workers and any difficulty for installing. In order to evaluate the thermal performance of energy piles, the thermal performance tests were carried out by applying intermittent (8 hours operating-16 hours pause) artificial cooling operation to simulate a cooling load for commercial buildings. Through the thermal performance tests, the heat exchange rates of the six energy piles were evaluated in terms of the heat exchange amount normalized with the length of energy pile and/or the length of heat exchange pipe. Finally, the economic feasibility of energy pile was evaluated according to the various types of heat exchange pipe by calculating demanded expenses per 1 W/m based on the thermal performance test results along with the market value of heat exchange pipes and labor cost.