• Title/Summary/Keyword: Inset-fed

Search Result 23, Processing Time 0.027 seconds

Design of Circularly Polarized Microstrip Patch Antenna Using Asymmetric Inset Feeding (비대칭 인셋 급전을 이용한 원형 편파 마이크로스트립 패치 안테나 설계)

  • Kwan-Joon Park;Dong-Kook Park
    • Journal of IKEEE
    • /
    • v.28 no.3
    • /
    • pp.279-284
    • /
    • 2024
  • In this paper, we propose a novel method for implementing a microstrip patch antenna with circular polarization characteristics through an asymmetric inset feed structure. The proposed method involves designing an antenna by taking advantage of the length difference of the asymmetric inset slots inserted into the antenna, as well as the lengths of additional slots incorporated into the design to achieve circular polarization characteristics. Using this approach, we designed and fabricated an antenna operating at 2.4 GHz in the S-band for satellite communication systems, utilizing a 1 mm thick FR-4 dielectric substrate. The measurement results confirmed a gain of 2dBi, an axial ratio of less than 3dB, and a reflection coefficient below -10dB in the frequency range of 2.35 to 2.43 GHz. Based on these results, it is expected that by employing the proposed method, circularly polarized antennas utilizing inset feeds can be realised, thereby making them applicable in small satellite communication systems and various wireless IoT environmental service applications that use the ISM band.

Design and Fabrication of Inset Fed Patch Antenna Loaded with CSLR (CSLR을 갖는 인셋 급전 패치 안테나 설계 및 제작)

  • Son, Hyeok-Woo;Kim, Byung-Mun;Park, Jin-Taek;Hong, Jae-Pyo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.5
    • /
    • pp.549-556
    • /
    • 2015
  • In this paper, design and fabrication for inset fed microstrip patch antennas applied to the $3{\times}3$ array CSLR and eight CSLR, respectively, to the ground plane are studied. The theoretical results are compared to the experimental results for the return loss and radiation pattern. For 'CSLR 09' antenna, the theoretical result for the resonant frequency and the return loss are 2.82 GHz and - 25.35 dB, respectively. The experimental results are obtained for a 2.885 GHz, -30.72 dB. Theoretical results for the resonant frequency and the return loss of the 'CSLR 08' antenna are 2.82 GHz, -16.77 dB, respectively, and the experimental results are obtained for a 2.885 GHz, -14.90 dB. In addition, E-plane and H-plane radiation patterns in comparison with designed and fabricated antennas are in good agreement.

Fabrication of CSLR-loaded Inset Fed Patch Antenna with a Conducting Reflector (반사판을 갖는 인셋 급전 CSLR 패치 안테나 제작)

  • Hong, Jae-Pyo;Kim, Byung-Mun;Son, Hyeok-Woo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.11
    • /
    • pp.1047-1052
    • /
    • 2016
  • In this paper, we propose the CSLR(: Complementary Single Loop Resonators)-loaded inset fed patch antenna with a conducting reflector to improve the radiation patterns. Reflector of the proposed antenna is located below about ${\lambda}_0/4$ from the ground plane of the patch, the size is about two times of the patch. The proposed antenna is designed and fabricated on the substrate which has a dielectric constant and thickness with 2.5 and 0.787 mm, respectively. Simulation results are obtained by using the HFSS, 3D EM Solver based Finite Element Method(: FEM). The resonant frequency and matching characteristics of the antenna with reflector are substantially the same as when there is no change in the antenna without reflector, it is confirmed that radiation patterns are significantly improved by the reflector.

A study of the inset-fed 4x4 microstrip patch array antenna for X-band applications (X-band 대역용 4x4 인셋 급전 마이크로스트립 패치 배열 안테나 연구)

  • Nkundwanayo Seth;Gyoo-Soo Chae
    • Journal of Advanced Technology Convergence
    • /
    • v.3 no.3
    • /
    • pp.9-15
    • /
    • 2024
  • This paper details research on the optimized design and fabrication of a 4x4 microstrip array antenna intended for X-Band applications. The study focuses on achieving the desired resonance frequency and gain by modifying the microstrip patch and array antenna parameters, including substrate type and patch size. It presents results from designing and fabricating a 4x4 array antenna with optimum substrate materials to enhance X-Band resonance characteristics and gain. The antenna dimensions are 10mm(W)x7.4mm(L)x 0.79mm(H), with an Rogers RO 4350B dielectric substrate (εr=3.54) and an inset-fed feeding method to minimize antenna size. Both the single patch and 4x4 array antennas demonstrated stable SWR (<1.5) and a gain of 18.5dBi at the target frequency of 10.3GHz in simulations. The fabricated antenna showed performance consistent with simulation results. This antenna design is suitable for X-Band applications, including military, satellite communications, and biomedical fields.

A Study on Bandwidth Broadening of U-slot Microstrip Patch Antenna Design with L-Shaped Inset-Feed Structure (L자형 Inset 급전구조를 갖는 U슬롯 마이크로스트립 패치 안테나의 광대역화에 관한 연구)

  • Kim, Jae-Yeon;Chang, Tae-Soon;Hur, Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.5
    • /
    • pp.33-39
    • /
    • 2021
  • In this study, we tried to find the correlation of the parameters and dual resonance of U-slot microstrip patch antenna with L-shaped Inset-feed structure and design broadband antenna using them. In the first step, we classified cases where dual resonance occurs through changes in antenna parameters that affect antenna performance. In the second step, we correlated each antenna parameter to the location and intensity of the resonance point, and 3 dB bandwidth. Next, antenna simulation confirmed the process of designing to have wide bandwidth using the correlation in the second step previously presented in the U-slot antenna case with narrow bandwidth. Finally, we fabricated a designed antenna and demonstrated the validity of antenna bandwidth broadening through the correlation analysis.

A Simulation Study of the Inset-fed 2-patch Microstrip Array Antenna for X-band Applications (X-band 대역용 2-패치 마이크로스트립 인셋 급전 어레이 안테나 시뮬레이션 연구)

  • Nkundwanayo Seth;Gyoo-Soo Chae
    • Advanced Industrial SCIence
    • /
    • v.3 no.2
    • /
    • pp.31-37
    • /
    • 2024
  • This paper presents a single and 2-patch microstrip array antenna operated on a frequency of 10.3GHz(x-band). It outlines the process of designing a microstrip patch array antenna using CST MWS. Initially, a single microstrip antenna was designed, followed by optimization using CST MWS to attain optimal return losses and gain. Subsequently, the design was expanded to create a 2×1 microstrip inset-fed array antenna for the X-band applications. The construction material is Roger RO4350B, with specific dimensions (h=0.79mm, 𝜖r = 3.54). The achieved results include an S11 of -18dB at the resonant frequency (10.3GHz), a gain of 9.82dBi, a bandwidth of 0.165GHz, and a 3-dB beamwidth of 30°, 121° in Az(𝜑=0) and El(𝜑=90) plane, respectively. The future plan involves the fabrication of this array antenna and further expansion to a 4×4 array of microstrip antennas. It is then incorporated on the X-band applications for practical uses.

Design of Microstrip Patch Antenna using Inset-Fed Layered for Metallic Object in u-Port (U-항만 환경에서 금속부착을 위한 인셋 급전 마이크로패치 안테나 설계)

  • Choi, Yong-Seok;Seong, Hyeon-Kyeong
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.2
    • /
    • pp.80-85
    • /
    • 2015
  • In this paper, we present, an indstrial RFID layered microstrip patch antenna is designed using an inset feed method in order to improve recognition rates in a long distance as tags are attached to metal object by improving a problem of feeding power in fabricating metal tags and reducing effects of metallic object. The inset feed shows a distinctive characteristic that has no separation between emitters and feed lines differing from a structure with the conventional inductive coupling feed. This structure makes possible to produce a type that presents a low antenna height and enables impedance coupling for tag chips. Although it shows a difficulty in the impedance coupling due to increases in the parasite capacitance between a ground plane and an emitter in an antenna according to decreases in the height of a tag antenna, it may become a merit in designing the tag antenna because the antenna impedance can be determined as an inductive manner if a shorted structure is used for feeding power. Therefore, in this paper the microstrip patch antenna is designed as a modified type and applies the inset feed in order to reduce effects of metallic objects where the antenna is be attached. Also, the antenna uses a multi-layer structure that includes a metal plate between radiator and ground instead of using a single layer.

A Study on a Shorting Pin and Slot-Loaded Antenna for Harmonic Suppression (고조파 억압을 위한 단락핀-슬롯 적재 안테나에 관한 연구)

  • 권세웅;이성호;이병무;김형락;윤영중
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.8
    • /
    • pp.811-818
    • /
    • 2002
  • In this paper, a shorting pin and slot-loaded microstrip patch antenna is designed and fabricated. A shorting pin and slots are used for harmonic suppression on an inset fed antenna. A shorting pin and slot properties are analyzed by cavity model of the rectangular patch and the characteristics of the designed antenna are described. The designed antenna provides a gain of 7 dBi at the fundamental frequency, 5.8 GHz. In the second and third harmonic frequencies, the proposed antenna has gain suppression properties of -3.3 dB and -14.3 dB at each harmonic frequency, respectively.

Design of Dual-fed Broadband Stacked Microstrip Patch Antenna (이중급전 광대역 적층 마이크로스트립 패치 안테나의 설계)

  • Kim, GunKyun;Rhee, Seung-Yeop;Yeo, Junho;Lee, Jong-Ig;Kim, On
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.74-75
    • /
    • 2016
  • Various types of microstrip antennas can be used for many applications in wireless communication systems. In this paper, we studied a design method for a broadband dual-fed stacked microstrip patch antenna. The impedance bandwidth is improved by adjusting the sizes of main radiating patch and parasitic patch, the distance between the patches, the length of inset feed line, etc. The antenna is designed by simulation for an operation in the frequency range of 2.3-2.7 GHz, and the antenna characteristics such as return loss, gain, radiation patterns are examined.

  • PDF

The Design and Modeling of a Reconfigurable Inset-Fed Microstrip Patch High Gain Antenna for Wireless Sensor Networks

  • Phan, Duy-Thach;Chung, Gwiy-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.145-150
    • /
    • 2011
  • In this paper, we designed a tunable microstrip patch antenna using RF MEMS switches. The design and simulation of the antenna were performed using a high frequency structure simulator(HFSS). The antenna was designed for use in the ISM band and either operates at 2.4 GHz or 5.7 GHz achieving -10 dB return-loss bandwidths of 20 MHz and 180 MHz, respectively. In order to obtain high efficiency and improve the ease of integration, a high resistivity silicon(HRS) wafer on a glass substrate was used for the antenna. The antenna achieved high gains: 8 dB at 5.7 GHz and 1 dB at 2.4 GHz. The RF MEMS DC contact switches were simulated and analyzed using ANSYS software.