Browse > Article
http://dx.doi.org/10.5369/JSST.2011.20.3.145

The Design and Modeling of a Reconfigurable Inset-Fed Microstrip Patch High Gain Antenna for Wireless Sensor Networks  

Phan, Duy-Thach (School of Electrical Engineering, University of Ulsan)
Chung, Gwiy-Sang (School of Electrical Engineering, University of Ulsan)
Publication Information
Journal of Sensor Science and Technology / v.20, no.3, 2011 , pp. 145-150 More about this Journal
Abstract
In this paper, we designed a tunable microstrip patch antenna using RF MEMS switches. The design and simulation of the antenna were performed using a high frequency structure simulator(HFSS). The antenna was designed for use in the ISM band and either operates at 2.4 GHz or 5.7 GHz achieving -10 dB return-loss bandwidths of 20 MHz and 180 MHz, respectively. In order to obtain high efficiency and improve the ease of integration, a high resistivity silicon(HRS) wafer on a glass substrate was used for the antenna. The antenna achieved high gains: 8 dB at 5.7 GHz and 1 dB at 2.4 GHz. The RF MEMS DC contact switches were simulated and analyzed using ANSYS software.
Keywords
Reconfigurable antenna; RF MEMS switches; Wireless sensor network;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 W.-S. Yoon, S.-M. Han, D.-H. Lee, K.-J. Lee, S. Pyo, and Y.-S. Kim, "A reconfigurable circularly polarized microstrip antenna on a cross-shape slotted ground", Journal of the Korea Electromagnetic Engineering Society, vol. 21, no. 1, pp. 46-52, 2010.   과학기술학회마을   DOI   ScienceOn
2 M. Maddela, R. Ramadoss, and R. Lempkowski, "A MEMS-based tunable coplanar patch antenna fabricated using PCB processing techniques", Journal of Micromech. and Microeng., vol. 17, pp. 812-819, 2007.   DOI   ScienceOn
3 R. N. Simons, D. Chun, and L. P. B Katehi, "Microelectromechanical systems(MEMS) actuators for antenna reconfigurability", NASA Research Report, NASA CR-2001-210612, 2001.
4 K. Topalli, O. A. Civi, S. Demir, S. Koc, and T. Akin, "Dual-frequency reconfigurable slot dipole array with a CPW-based feed network using RF MEMS technology for X-and Ka band application", Antennas and Propagation International Symposium, ISBN: 978-1-4244-0877-1, pp. 825-828, 2007.
5 P. Blondy, D. Bouyge, A. Crunteanu, and A. Pothier, "A wide tuning range MEMS switched patch antenna", Microwave Symposium Digest, IEEE MTT-S International, pp. 152-154, 2006.   DOI
6 W. Pan, S.-Z. Wu, and Y. Chen, "Micromachined patch antennas on synthesized substrates", International Conference on Mirowave and Milimeter Wave Technology Proceedings, pp. 58-61, 2004.
7 P. Sharma, S. K. Koul, and S. Chandra, "Micromachined inset-fed patch antenna at Ka-band", Proceedings of Asia Microwave Pacific Conference(APMC-2006), pp. 12-15, Yokohama, Japan, 2006.
8 H. Fang, Z. Jian, Y. Yuan-wei, and W. Jing, "Milimeter-wave design of aperture-coupled micromachined patch antennas", ICMMT 2008 Proceedings, pp. 1401-1404, April 2008.
9 Design Inset-Fed Microstrip Patch Antenna, www.mwrf.com.
10 Coplanar wave guide calculator, www.microwaves101.com.
11 Gabriel M. Rebeiz, RF MEMS theory, design, and technology, John Wiley & Son, ISBN: 0-471-20169-3, p. 38.
12 P. M. Mendes, M. Bartek, J. N. Burghartz, and J. H. Correia, "Novel very small dual-band chip size antenna for wireless sensor networks", Proc. IEEE RAWCON, pp. 419-422, Atlanta, USA, 2004.   DOI
13 P. M. Mendes, A. Polyakov, M. Bartek, J. N. Burghartz, and J. H. Correia "Integrated 5.7 GHz chip size antenna for wireless sensor network", Transducers'03, pp. 49-52, Boston, USA, 2003.