• 제목/요약/키워드: Inquiry Instruction Model

검색결과 37건 처리시간 0.281초

A Study on Development of Mathematics Performance Assessment Tasks for the Fifth Graders in the Primary School (초등학교 5학년 수학과 수행평가 과제 개발에 관한 연구)

  • 유현주;정영옥;류순선
    • School Mathematics
    • /
    • 제2권1호
    • /
    • pp.203-241
    • /
    • 2000
  • This study aims to suggest a model of task development for mathematics performance assessment and to develop performance tasks for the fifth graders in the primary school on the basis of this model. In order to achieve these aims, the following inquiry questions were set up: (1) to develop open-ended tasks and projects for the fifth graders, (2) to develop checklists for measuring the abilities of mathematical reasoning, problem solving, connection, communication of the fifth graders more deeply when performance assessment tasks are implemented and (3) to examine the appropriateness of performance tasks and checklists and to modify them when is needed through applying these tasks to pupils. The consequences of applying some tasks and analysing some work samples of pupils are as follows. Firstly, pupils need more diverse thinking ability. Secondly, pupils want in the ability of analysing the meaning of mathematical concepts in relation to real world. Thirdly, pupils can calculate precisely but they want in the ability of explaining their ideas and strategies. Fourthly, pupils can find patterns in sequences of numbers or figures but they have difficulty in generalizing these patterns, predicting and demonstrating. Fifthly, pupils are familiar with procedural knowledge more than conceptual knowledge. From these analyses, it is concluded that performance tasks and checklists developed in this study are improved assessment tools for measuring mathematical abilities of pupils, and that we should improve mathematics instruction for pupils to understand mathematical concepts deeply, solve problems, reason mathematically, connect mathematics to real world and other disciplines, and communicate about mathematics.

  • PDF

A Comparative Study of Knowledge Integration in the Textbook and Students' Mental Model about the Phases of the Moon (달의 위상 변화에 관한 교과서의 지식 통합 과정 및 학생 정신 모델의 비교 연구)

  • Sung, Na-Hae;Choe, Seung-Urn
    • Journal of the Korean earth science society
    • /
    • 제29권2호
    • /
    • pp.163-174
    • /
    • 2008
  • In this study, we compared textbook knowledge organization with students' mental models to contribute to a more well-designed instruction scheme. The selected science content was the cause of moon phases. We investigated 9 textbooks and 25 third-year middle school students. Patterns and features in participants' mental models were identified through cross inter-rater data analysis by 9 researchers, including in service teachers and experts in science education. According to the results, observing and modeling are the main activities engaged in when dealing with moon phases. The activities consisted of such concepts as: lunar revolution, the sun's parallel rays, the illuminated half of moon, and the relative positions of the sun, moon, and earth. Each concept involved inquiry skills such as: creating and manipulating models, utilizing the relationship between time and space, and communicating. However, the most important skills which are required for authentic scientific inquiry, namely controlling variables and formulating hypotheses, were missing. We categorized students' mental models into three types: scientific models, mixed models, and alternative models. The knowledge structure of each of the models was also discussed in this paper. Consequently, it was found that, typically, students were not given enough opportunities to strengthen the connection among ideas.

Three Teaching-Learning Plans for Integrated Science Teaching of 'Energy' Applying Knowledge-, Social Problem-, and Individual Interest-Centered Approaches (지식내용, 사회문제, 개인흥미 중심의 통합과학교육 접근법을 적용한 '에너지' 주제의 교수.학습 방안 개발(II))

  • Lee, Mi-Hye;Son, Yeon-A;Young, Donald B.;Choi, Don-Hyung
    • Journal of The Korean Association For Science Education
    • /
    • 제21권2호
    • /
    • pp.357-384
    • /
    • 2001
  • In this paper, we described practical teaching-learning plans based on three different theoretical approaches to Integrated Science Education (ISE): a knowledge centered ISE, a social problem centered ISE, and an individual interest centered ISE. We believe that science teachers can understand integrated science education through this paper and they are able to apply simultaneously our integrated science teaching materials to their real instruction in classroom. For this we developed integrated science teaching-learning plans for the topic of energy which has a integrated feature strongly among integrated science subject contents. These modules were based upon the teaching strategies of 'Energy' following each integrated directions organized in the previous paper (Three Strategies for Integrated Science Teaching of "Energy" Applying Knowledge, Social Problem, and Individual Interest Centered Approaches) and we applied instruction models fitting each features of integrated directions to the teaching strategies of 'Energy'. There is a concrete describing on the above three integrated science teaching-learning plans as follows. 1. For the knowledge centered integration, we selected the topic, 'Journey of Energy' and we tried to integrate the knowledge of physics, chemistry, biology, and earth science applying the instruction model of 'Free Discovery Learning' which is emphasized on concepts and inquiry. 2. For the social problem centered integration, we selected the topic, 'Future of Energy' to resolve the science-related social problems and we applied the instruction model of 'Project Learning' which is emphasized on learner's cognitive process to the topic. 3. For the individual interest centered integration, we selected the topic, 'Transformation of Energy' for the integration of science and individual interest and we applied the instruction model of 'Project Learning' centering learner's interest and concern. Based upon the above direction, we developed the integrated science teaching-learning plans as following steps. First, we organized 'Integrated Teaching-Learning Contents' according to the topics. Second, based upon the above organization, we designed 'Instructional procedures' to integrate within the topics. Third, in accordance with the above 'Instructional Procedures', we created 'Instructional Coaching Plan' that can be applied in the practical world of real classrooms. These plans can be used as models for the further development of integrated science instruction for teacher preparation, textbook development, and classroom learning.

  • PDF

The Effect of Inquiry Instruction Strategy Enhancing the Activity of Making Variables to Improve on Students' Creative Problem Solving Skills (변인 탐색 활동을 강화한 탐구 수업 전략이 창의적 문제 해결력 신장에 미치는 효과)

  • Park, Jieun;Kang, Soonhee
    • Journal of the Korean Chemical Society
    • /
    • 제58권5호
    • /
    • pp.478-489
    • /
    • 2014
  • The purposes of this study were to develop teaching strategy enhancing the activity to explore variables and to examine the instructional influences on students' creative thinking skills and critical thinking skills. In this study, a model using listing-excluding-controlling variables (DPAS model) was designed and applied to the existing 'Teaching model for the enhancement of the creative problem solving skills'. And it was implemented to preservice science teachers for the one semester. Results indicated that the experimental group presented statistically meaningful improvement in creative thinking skills, especially in recognizing problems, making hypothesis, controlling of variables and interpreting & transforming of data (p<.05). In addition, the strategy contributed to improve critical thinking skills, especially in making hypothesis and making conclusion & generalization (p<.05).

Middle School Student’s Conceptual Change from Geocentricism to Heliocentricism Using Science History Materials (과학사 자료를 활용한 중학생들의 천동설에서 지동설로의 개념 변화)

  • Choi Jin-Hee;Kim Hee-Soo;Chung Jung-In
    • Journal of the Korean earth science society
    • /
    • 제26권6호
    • /
    • pp.489-500
    • /
    • 2005
  • The objective of this study is to examine the cognitive process that undergoes a middle student’s conceptual change about the universe by the cognitive conflict, using science history materials as a teaching strategy. Four eighth graders were selected and classified by three cognitive level. Students were interviewed and conducted to an inquiry activities regarding their viewpoint about the universe after each class, and their conceptual change patterns were analysed from pre-test and post-test. This study showed that each student held dissimilar astronomical preconceptions and various misconceptions about celestial motion. Students at the formal operational stage and transitional stage experienced the conceptual change from geocentricism to heliocentricism by instructional model upon the science history materials. Student at the concrete operational stage had either unscientific conception, no conception, or could not have a conceptual change even when being presented with an environment that arouses cognitive conflict ($R^2$: Phase change of Venus and its Rise and set time). They ended up having a cognitive change from geocentricism to heliocentricism by solving another problem ($R^2$: Relation between visible diameter and position of Mars). After the instruction, a conceptual achievement progress was reported with a $10\%$ improvement. Therefore, the instruction model based upon science history was effective on student’s scientific conceptual change.

Pre-service Teachers' Development of Science Teacher Identity via Planning, Enacting and Reflecting Inquiry-based Biology Instruction (예비교사들의 과학 교사 정체성 형성 -생명과학 탐구 수업 시연 및 반성 과정을 중심으로-)

  • An, Jieun;Kim, Heui-Baik
    • Journal of The Korean Association For Science Education
    • /
    • 제41권6호
    • /
    • pp.519-531
    • /
    • 2021
  • This study investigates the science teacher identity of pre-service science teachers (PSTs) in the context of a teaching practice course. Twenty-two PSTs who took the 'Biological Science Lab. for Inquiry Learning' course at the College of Education participated in this study. Artifacts created during the course were collected, and the teaching practices and reflections were recorded and transcribed. In addition, semi-structured interviews were conducted with nine PSTs, recorded, and transcribed. We found the science teacher identity was not well revealed at the beginning of the course. Authoritative discourse appeared in the early oral reflections of PSTs, indicating that the PSTs perceived oral reflection activities as 'evaluation activities for teaching practice'. This perception shows that pre-service teachers participate in teaching practice courses as students attending a university, performing tasks and receiving evaluations from instructors. After the middle of the course, discourses showing the science teacher identity of the PSTs were observed. In the oral reflection after the middle part, dialogic discourses often arose, showing that the PSTs perceive the oral reflection activities as a 'learning activity for professional development'. In addition, in the second half, discourse appeared to connect and interpret one's experience with the teacher's activity, indicating that the PSTs perceive themselves as teachers at this stage. In addition, the perception of experimental classes was expanded through the course. During the course, the practice of equalizing the authority of the participants, providing a role model for reflection, and experiencing various positions from multiple viewpoints in the class had a positive effect on the formation and continuation of the teacher identity. This study provides implications on the teacher education process for teacher identity formation in PSTs.

Design and Implementation of an e-NIE Learning Model for Technical High Schools (공업계 고등학교를 위한 전자신문활용교육 학습 모형의 설계 및 구현)

  • Kang Oh-Han;Lee Gyoung-Hwan
    • Journal of Korea Society of Industrial Information Systems
    • /
    • 제11권2호
    • /
    • pp.18-28
    • /
    • 2006
  • We consider a Direct Input Output Manufacturing System(DIOMS) which has a munber of machine centers placed along a built-in Automated Storage/Retrieval System(AS/RS). The Storage/Retrieval (S/R) machine handles parts placed on pallets for the operational aspect of DIOMS and determines the optimal operating policy by combining computer simulation and genetic algorithm. The operational problem includes: input sequencing control, dispatching rule of the S/R machine, machine center-based part type selection rule, and storage assignment policy. For each operating policy, several different policies are considered based on the known research results. In this paper, using the computer simulation and genetic algorithm we suggest a method which gives the optimal configuration of operating policies within reasonable computation time.

  • PDF