• Title/Summary/Keyword: Input-output decomposition

Search Result 137, Processing Time 0.025 seconds

Input-Output Structural Decomposition Analysis on the Growth Structure of Korean Maritime and Port Industry (투입·산출 구조분해를 통한 해운항만산업 성장구조분석)

  • Sang Choon Kim
    • Korea Trade Review
    • /
    • v.46 no.1
    • /
    • pp.83-111
    • /
    • 2021
  • This paper conducts a Structural Dcomposition Analysis on the structure of factors contributing to the output growth of Korean Maritime and Port Industry during year 2000~ year 2017. Some of results are as follows. The output growth rates of the industry (yearly average 4.3%) was far lower than the average growth rates of Service as well as of Manufacturing Industries (yearly average 9% and 6.8%, respectively) due to the lower output growth of Maritime Industry. Among the growth contributing factors, change in domestic demand for final goods is the first contributing factor, and then change in technology, change in export and import substitution for intermediate goods are followed in order, but import substitution for final goods decreased its output. However, in each respective sub-periods of pre-global financial crisis and post-global financial crisis, change in the export, especially change in the export of Maritime Industry is the dominant determinant of output change in the Maritime and Port Industry in opposite ways. In the periods of the former the increase in the export of Maritime Industry overwhelmingly led the output growth of the Maritime and Port industry, but in the periods of the latter the decrease in its export was the culprit of lower output growth of the industry. On the other hand, among all industries of service and manufacturing sectors, Wholesale and Retail industry is the leading industry in contributing to the output growth of the Maritime and Port Industry, and Transportation Equipment industry is the leading industry among all manufacturing industries.

Implementation-Friendly QRM-MLD Using Trellis-Structure Based on Viterbi Algorithm

  • Choi, Sang-Ho;Heo, Jun;Ko, Young-Chai
    • Journal of Communications and Networks
    • /
    • v.11 no.1
    • /
    • pp.20-25
    • /
    • 2009
  • The maximum likelihood detection with QR decomposition and M-algorithm (QRM-MLD) has been presented as a suboptimum multiple-input multiple-output (MIMO) detection scheme which can provide almost the same performance as the optimum maximum likelihood (ML) MIMO detection scheme but with the reduced complexity. However, due to the lack of parallelism and the regularity in the decoding structure, the conventional QRM-MLD which uses the tree-structure still has very high complexity for the very large scale integration (VLSI) implementation. In this paper, we modify the tree-structure of conventional QRM-MLD into trellis-structure in order to obtain high operational parallelism and regularity and then apply the Viterbi algorithm to the QRM-MLD to ease the burden of the VLSI implementation.We show from our selected numerical examples that, by using the QRM-MLD with our proposed trellis-structure, we can reduce the complexity significantly compared to the tree-structure based QRM-MLD while the performance degradation of our proposed scheme is negligible.

Performance Analysis of a Adaptive OFDM-MIMO System (적응형 ODFM/MIMO 시스템의 성능 분석)

  • Kang, Hui-Hun;Lee, Yeong-Jong;Han, Wan-Ok;Hyeon, Dong-Hwan
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.481-482
    • /
    • 2007
  • This paper demonstrates OFDM with adaptive modulation applied to Multiple-Input Multiple-Output (MIMO) systems. We apply an optimization algorithm to obtain a bit and power allocation for each subcarrier assuming instantaneous channel knowledge. The analysis and simulation is considered in two stages. The first stage involves the application of a variable-rate variable-power MQAM technique for a Single-Input Single-Output(SISO) OFDM system. This is compared with the performance of fixed OFDM transmission where a constant rate is applied to each subcarrier. The second stage applies adaptive modulation to a general MIMO system by making use of the Singular Value Decomposition to separate the MIMO channel into parallel subchannels. For a two-input antenna, two-output antenna system, the performance is compared with the performance of a system using selection diversity at the transmitter and maximal ratio combining at the receiver.

  • PDF

Sign-Select Lookahead CORDIC based High-Speed QR Decomposition Architecture for MIMO Receiver Applications

  • Lee, Min-Woo;Park, Jong-Sun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.1
    • /
    • pp.6-14
    • /
    • 2011
  • This paper presents a high-speed QR decomposition architecture for the multi-input-multi-output (MIMO) receiver based on Givens rotation. Under fast-varying channel, since the inverse matrix calculation has to be performed frequently in MIMO receiver, a high performance and low latency QR decomposition module is highly required. The proposed QR decomposition architecture is composed of Sign-Select Lookahead (SSL) coordinate rotation digital computer (CORDIC). In the SSL-CORDIC, the sign bits, which are computed ahead to select which direction to rotate, are used to select one of the last iteration results, therefore, the data dependencies on the previous iterations are efficiently removed. Our proposed QR decomposition module is implemented using TSMC 0.25 ${\mu}M$ CMOS process. Experimental results show that the proposed QR architecture achieves 34.83% speed-up over the Compact CORDIC based architecture for the 4 ${\times}$ 4 matrix decomposition.

Implemented Circuits of Fuzzy Inference Engine for Servo Control by using Decomposition of $\alpha$-Level Set ($\alpha$-레벨 집합 분해에 의한 서보제어용 퍼지추론 연산회로 구현)

  • Hong Jeng-pyo;Hong Soon-ill
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.2
    • /
    • pp.90-96
    • /
    • 2005
  • This paper presents hardware scheme of fuzzy inference engine, based on α-level set decomposition of fuzzy sets for fuzzy control of DC servo system. We propose a method which is directly converted to PWM actuating signal by a one body of fuzzy inference and defuzzification. The influence of quantity α-levels on input/output characteristics of fuzzy controller and output response of DC servo system is investigated. It is concluded that quantity α-cut 4 give a sufficient result for fuzzy control performance of DC servo system. The experimental results shows that the proposed hardware method is effective for practical applications of DC servo system.

Analysis of Code Design Evaluation Methods According to Input/Output Information Conditions (입출력 정보 조건에 따른 코드 설계 평가 방법 분석)

  • Kyeong Hur
    • Journal of Practical Engineering Education
    • /
    • v.16 no.3_spc
    • /
    • pp.259-265
    • /
    • 2024
  • In order to improve the SW convergence capabilities of university undergraduate students, methods to evaluate undergraduate students' code design capabilities should be researched along with the development of related courses. In previous studies, there were qualitative evaluation methods and quantitative relative evaluation methods for code results. In the quantitative relative evaluation method, the number of problem decomposition depth, number of function reuses, and number of functions were measured and evaluated. In this study, an evaluation method that was not presented in previous studies was proposed using the problem of presenting the number of input and output information types when designing code. The evaluation problems proposed in this paper applied up to three types of input information and three types of output information. Through this, five code design evaluation questions were presented and a method to quantitatively calculate code design scores was proposed. Codes from 100 student respondents were collected and analyzed through courses that applied the proposed evaluation method. Through result analysis, the number of problem decomposition depths was proportional to the number of types of input information, the number of function reuses was proportional to the number of types of output information, and the number of functions showed a correlation that was proportional to the total number of types of input and output information. Lastly, by analyzing the distribution of evaluation scores of 100 respondents, we demonstrated that the code design evaluation method according to the five input/output information condition evaluation problems is effective.

Standard decomposed system (표준분해시스템)

  • 하인중
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.55-60
    • /
    • 1986
  • Conditions for achieving noninteraction in nonlinear multivariable systems via the decomposition of state space are well established. The main contribution of this paper is to present a Standard Decomposed System (SDS). The SDS is similar to the decomposed system of Isidorl, Krener, Gori-Giorgi, and Monaco but has a finer structure. The finer structure parallels the one used by Gilbert for linear systems. A weaker form of noninteraction, based on input-output behaviour, is decoupling. Some connections between decomposition and decoupling are also established.

  • PDF

Iterative identification methods for ill-conditioned processes

  • Lee, Jietae;Cho, Wonhui;Edgar, Thomas F.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1762-1765
    • /
    • 1997
  • Some ill-conditioned processes are very sensitive to small element-wise uncertainties arising in classical element-by-element model identifications. For such processes, accurate identification of simgular values and right singular vectors are more important than theose of the elements themselves. Singular values and right singular vectors can be found by iteraive identification methods which implement the input and output transformations iteratively. Methods based on SVD decomposition, QR decomposition and LU decomposition are proposed and compared with the Kuong and Mac Gregor's method. Convergence proofs are given. These SVD and QR mehtods use normal matrices for the transformations which cannot be calculated analytically in general and so they are hoard to apply to dynamic processes, whereas the LU method used simple analyitc transformations and can be directly applied to dynamic processes.

  • PDF

Low-Complexity Soft-MIMO Detection Algorithm Based on Ordered Parallel Tree-Search Using Efficient Node Insertion (효율적인 노드 삽입을 이용한 순서화된 병렬 트리-탐색 기반 저복잡도 연판정 다중 안테나 검출 알고리즘)

  • Kim, Kilhwan;Park, Jangyong;Kim, Jaeseok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.10
    • /
    • pp.841-849
    • /
    • 2012
  • This paper proposes an low-complexity soft-output multiple-input multiple-output (soft-MIMO) detection algorithm for achieving soft-output maximum-likelihood (soft-ML) performance under max-log approximation. The proposed algorithm is based on a parallel tree-search (PTS) applying a channel ordering by a sorted-QR decomposition (SQRD) with altered sort order. The empty-set problem that can occur in calculation of log-likelihood ratio (LLR) for each bit is solved by inserting additional nodes at each search level. Since only the closest node is inserted among nodes with opposite bit value to a selected node, the proposed node insertion scheme is very efficient in the perspective of computational complexity. The computational complexity of the proposed algorithm is approximately 37-74% of that of existing algorithms, and from simulation results for a $4{\times}4$ system, the proposed algorithm shows a performance degradation of less than 0.1dB.

Analysis of Damped Vibration Signal using Empirical Mode Decomposition Method (경험 모드 분석법을 이용한 감쇠 진동 신호의 분석)

  • Lee, In-Jae;Lee, Jong-Min;Hwang, Yo-Ha;Huh, Kun-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.699-704
    • /
    • 2004
  • Empirical mode decomposition(EMD) method has been recently proposed to analyze non-linear and non-stationary data. This method allows the decomposition of one-dimensional signals into intrinsic mode functions(IMFs) and is used to calculate a meaningful multi-component instantaneous frequency. In this paper, it is assumed that each mode of damped vibration signal could be well separated in the form of IMF by EMD. In this case, we can have a new powerful method to calculate natural frequencies and dampings from damped vibration signal which usually has multiple modes. This proposed method has been verified by both simulation and experiment. The result by EMD method which has used only output vibration data is almost identical to the result by FRF method which has used both input and output data, thereby proving usefulness and accuracy of the proposed method.

  • PDF