• Title/Summary/Keyword: Input stabilization

Search Result 170, Processing Time 0.03 seconds

A Study on the Role of Input Stabilization for Successful Settle down of TRM in Production Process : A Case of Display Industry (생산공정에서 TRM의 성공적 정착을 위한 Input 안정화의 역할에 관한 연구 : 디스플레이 산업 중심으로)

  • Cho, Myong Ho;Cho, Jin Hyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.1
    • /
    • pp.140-152
    • /
    • 2016
  • It is very important for the competitiveness and sustainable management of enterprises that the rapid changes in the managerial environments quickly and accurately are responded. For example, the large-scale investment accompanied by bad alternatives in accordance with misunderstanding of the managerial environments yields the huge cost and effort to modify and improve. In firm management, the quality of products and the productivity are influenced by changes of the endogenous factors yielded in manufacturing process and the exogenous factors as market, etc. These changes include not only changes in 4M (man, machine, material, method) but also those in the market, competitors, and technologies in the process of commodification, i.e., first, such disturbances make dispersion of the process big and odd. By Shewhart chart it can be checked that the process monitored is control-in or out. Business administration executes activities for input stabilization by monitoring changes in 4Ms, comparing with the standards, and taking measures for any abnormality. Second, TRM (technology road map) is to prospect product deployment and technological trend by predicting technologies in the competitive environment as the market, and to suggest the future directions of business. So, TRM must be modified and improved according to DR (design review) stages and changes in mass-production like input material change. Therefore, a role of TRM in input stabilization for reducing cost and man-hour is important. This study purposed to suggest that the environment changes are classified into endogenous factors and exogenous factors in production process, and then, quality and productivity should be stabilized efficiently through connection between TRM and input stabilization, and to prove that it is more effective for the display industry to connect TRM with input stabilization rather than to use TRM separately.

On the stabilization of linear discrete time systems subject to input saturation

  • Choi, Jinhoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1770-1773
    • /
    • 1997
  • In this paper, a linear discrete time system subject to the input saturatioin is shown to be exponentially stabilizable on any compact subset of the constrained asymptotically stabilizable set by a linear periodic variable structure controller. We also establish tat any neutrally stable system subject to the input saturation can be globally asymptotically stabilizable via linear feedback.

  • PDF

Output Feedback Stabilization using Integral Sliding Mode Control (적분 슬라이딩 모드 제어기를 이용한 출력 궤환 안정화)

  • Oh, Seung-Rohk
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.3
    • /
    • pp.142-147
    • /
    • 2003
  • We consider a single-input-single-output nonlinear system which can be represented in a normal form. The nonlinear system has a modeling uncertainties including the input coefficient uncertainty. A high-gain observer is used to estimate the states variables to reject a modeling uncertainty. A globally bounded output feedback integral sliding mode control is proposed to stabilize the closed loop system. The proposed integral sliding mode control can asymptotically stabilize the closed loop system in the presence of input coefficient uncertainty.

Delay-Dependent Robust Stabilization and Non-Fragile Control of Uncertain Discrete-Time Singular Systems with State and Input Time-Varying Delays (상태와 입력에 시변 시간지연을 가지는 불확실 이산시간 특이시스템의 지연종속 강인 안정화 및 비약성 제어)

  • Kim, Jong-Hae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.2
    • /
    • pp.121-127
    • /
    • 2009
  • This paper deals with the design problem of robust stabilization and non-fragile controller for discrete-time singular systems with parameter uncertainties and time-varying delays in state and input by delay-dependent Linear Matrix Inequality (LMI) approach. A new delay-dependent bounded real lemma for singular systems with time-varying delays is derived. Robust stabilization and robust non-fragile state feedback control laws are proposed, which guarantees that the resultant closed-loop system is regular, causal and stable in spite of time-varying delays, parameter uncertainties, and controller gain variations. A numerical example is given to show the validity of the design method.

Stochastic Stabilization of TS Fuzzy System with Markovian Input Delay (마코프 입력 지연 시스템의 확률적 안정화)

  • Lee, Ho-Jae;Park, Jin-Bae;Lee, Sang-Youn;Joo, Young-Hoon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.153-156
    • /
    • 2001
  • This paper discusses a stochastic stabilization of Takagi-Sugeno (75) fuzzy system with Markovian input delay. The finite Markovian process is adopted to model the input delay of the overall control system. It is assumed that the zero and hold devices are used for control input. The continuous-time 75 fuzzy system with the Markovian input delay is discretized for easy handling delay, accordingly, the discretized 75 fuzzy system is represented by a discrete-time 75 fuzzy system with jumping parameters. The stochastic stabilizibility of the jump 75 fuzzy system is derived and formulated in terms of linear matrix inequalities (LMls).

  • PDF

Robust stabilization of nonlinear uncertain systems without matching conditions (정합조건을 만족하지 않는 불확정 비선형 시스템의 강인 안정화)

  • 주진만;최윤호;박진배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.159-162
    • /
    • 1997
  • This paper describes robust stabilization of nonlinear single-input uncertain systems without matching conditions. We consider nonlinear systems with a vector of unknown constant parameters perturbed about a known value. The approach utilizes the generalized controller canonical form to lump the unmatched uncertainties recursively into the matched ones. This can be achieved via nonlinear coordinate transformations which depend not only on the states of the nonlinear system but also on the control input. Then the dynamic robust control law is derived and the stability result is also presented.

  • PDF

Sliding Mode Control with Uncertainty Adaptation for Uncertain Input-Delay Systems (시간지연 시스템에서의 불확실성 추정을 갖는 슬라이딩 모드제어)

  • Roh, Young-Hoon;Oh, Jun-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.11
    • /
    • pp.963-967
    • /
    • 2000
  • This paper deals with a sliding mode control with uncertainty adaptation for the robust stabilization of input-delay systems with unknown uncertainties. A sliding surface including a state predictor is employed to compensate for the effect of the input delay. The proposed method does not need a priori knowledge of upper bounds on the norm of uncertainties, but estimates those upper bounds by adaptation laws based on the sliding surface. Then, a robust control law with the uncertainty adaptation is derived to ensure the existence of the sliding mode. A numerical example is given to illustrate the design procedure.

  • PDF

Sliding Mode Control for Robust Stabilization of Uncertain Input-Delay Systems

  • Roh, Young-Hoon;Oh, Jun-Ho
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.2
    • /
    • pp.98-103
    • /
    • 2000
  • This paper is concerned with a delay-dependent sliding mode scheme for the robust stabilization of input-delay systems with bounded unknown uncertainties. A sliding surface based ona predictor is proposed to minimize the effect of the input delay. Then, a robust control law is derived to ensure the existence of a sliding mode on the surface. In input-delay systems, uncertainties given during te delayed time are not directly controlled by the switching control because of causality prolem of them. They can influence the stability of the system in the sliding mode. Hence, a delay-dependent stability analysis for reduced order dynamics is employed to estimate maximum delay bound such that the system is globally asymptotically stable in the sliding mode. A numerical example is given to illustrate the design procedure.

  • PDF

Stabilization of Saturation Nonlinearity System using Describing Functions (기술함수를 사용한 포화 비선형성 시스템의 안정화)

  • Song, Ja-Youn
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2043-2045
    • /
    • 2002
  • When the input is small, increase of the input leads to a corresponding increase of output, but when the input reaches a certain level, its further increase does produces little or no increase of the output. When this phenomenon happens, the device is said to be in saturation. Occurence of saturation amounts to reducing the gain of the device as the input signals are increased. An extreme case of saturation is the on-off or relay nonlinearity. On-off nonlinearitics have effects similar to those of saturation nonlinearities. Furthermore they can lead to "chattering" in the physical systems doc to their discontinuous nature. This paper presents stabilization method of saturation nonlinearity system using deadzone describing function etc.. And computer simulation results show that saturation nonlinearity can be eliminated due to deadzone nonlinearity.

  • PDF