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Abstract In this paper, a linear discrete time system subject to the input saturation is shown to be
exponentially stabilizable on any compact subset of the constrained asymptotically stabilizable set by a
linear periodic variable structure controller. We also establish that any neutrally stable system subject
to the input saturation can be globally asvinptotically stabilizable via linear feedback.
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1. Introduction

It is shown in [3], [4] that an input constrained
linear discrete time system can be globally asymp-
totically stabilizable iff all its poles are located in-
side or on the unit circle. In [4], a nonlinear glob-
ally stabilizing control law for marginally stable
systems is constructed. However, Yang [5] showed
a negative result that the constrained global sta-
bilization of such systems is in general impossible
through linear feedback. Nevertheless, Lin and S-
aberi [2], [1] showed that there exists a linear con-
trol that exponentially stabilizes a marginally sta-
ble system on any bounded subset of the state s-
pace. These constrained stabilization results fo-
cused on marginally stable systems and the con-
strained stabilization of unstable systems has not
been addressed vet.

In this paper, we first show that any neutral-
lv stable systems can be globally asymptotical-
ly stabilized through linear feedback in the pres-
enice of the input saturation. Then we address
the constrained stabilization of unstable system-
s. For stable and marginally stable systems, the
desired region for the stabilization was the entire s-
tate space. However, as mentioned above, the con-
strained global stabilization is impossible for un-
stable systems. Hence, for unstable systems, it is
important to know the region over which the con-
strained stabilization is possible. The largest pos-
sible region for the constrained stabilization is the
constrained asymptotically stabilizable set. Hence,
we first establish the properties and structure of
the constrained asymptotically stabilizable set. We

then show that any unstable systems can be ex-
ponentially stabilized by a linear periodic variable
structure controller on any compact subset of the
constrained asymptotically stabilizable set.

2. Main Results

Consider the system

z(k+1) = Az(k) + Bo(u(k)), x(0) =20, (1)
y(k) = Ca(k),

where (k) € R™, u(k) € R™, y(k) € R, and

—Ulim if u < —Ulim,
olu) =< u i =i < u < wgyy,
Ulm if u> WUiim

Throughout the paper, the following two assump-
tions are adopted. Firstly, the stabilizability of
(A. B) is assumed that is necessary for the con-
strained stabilizability. Secondly, we assume with-
out loss of generality that all the eigenvalues are
unstable. Under this assumption, the first assump-
tion reduces to the controllability of (A, B) and the
constrained stabilizable set to the constrained null
controllable set.

We need the following properties of the satura-
tion function o in the sequel.

Fact 2.1 [{]: sTa(s) > 0if s # 0, and sTa(s) >
(T(.s')TU(.s’).

We first show that, similar to the continuons
time case [4], the global asymptotic stabilization
of the saturated system is possible through lin-
ear feedback if System (1) is neutrally stable: i.e.

1770



Jordan blocks associated with eigenvalues outside
the open unit disk are simple and all the other
eigenvalues are in the interior of the open unit
disk. Frist notice that there exists an invertible
matrix 1" for which T~V AT is unitary such that
(I=YATY'T-YAT = I. Let A := T'AT and
B :=T"'B. Then define

w(k) =

where v > 0 is to be chosen later.

—o(kBTAT 2).

Consider the
following Lyapunov function candidate:

Vie)=(T"')T1 ",

Clearly, V is continuous, positive definite. and ra-
dially unbounded. Moreover, it holds that

AV(z(k+ 1) =V(e(k+ 1)) — V(x(k))
D+2(T 7 (k)T AT Bu(k)
(k)T T e (k)
— T (k)
(k)

= (T e (k) ATAT  a(k
+u(k)BT Bu(k) — (T~
= (T ' (k)T (ATA

——%(T_l.r(k))TATBH,U(f;BTAT_l

Y
+o(kBTAT e (k)T BT Bo(« BTAT 2 (k))
= —%(T_lm(A:))TATBHU(&BTAT_I:z:(k))
+a(kBTAT (k)T BT Bo(x BT AT "2 (k).
Now choose & > 0 such that
BB - ;1 < 0.

Then from Fact 2.1, AV (:) < 0. Suppose AV =10
along a trajectory a (k). Then it must hold that, a-
long the trajectory, BTAT="x(k) = 0 and. in turn.
u(k) = 0. Since it holds along the trajectory that

T (k4 1) = AT "2 (k).

it follows that

= BT Yok + 1) = BT A>T (k).

Similarly. it holds along the trajectory that

BFAT (k) =

for all <. This implies
B
0= : T (k)
Bl A"

BT(AT)n—l
= AMT Ve (k).
BT
Hence, from the controllability of (A. B), it follows
that (&) = 0.
ity follows from LaSalle’s Invariance Principle.
We now consider the exponential stabilization

Then the global asymptotic stabil-

of unstable systems subject to the input saturation
on any compact subset of the constrained asymp-
totically stabilizable set via linear periodic variable
structure feedback. Let

U:i={ueR": —ug <u< g}

Clearly, U is a rectangle in R™ that is compact.
convex and symmetric with respect to the origin.
We now define the constrained N step null con-

trollable

set as:

Cn:={zo € R"|Fu(k) € U, 2(N) =0}

and the constrained asymptotically null control-

lable set as:

k—oc

Co = {(L‘U € R"” ‘Hu(k) e U, llm z(k) = ()} .
It is trivial to show that Cn and (., have the
following properties.

Fact 2.2: Cn C Co, forall N.

Fact 2.3: Cny C Cpyo if N < N'.

Theorem 2.1: Cn, 0 < N < oo, is convex and
symmetric with respect to the origin.

Proof: Let z}, 23 € Cn. Suppose ul (k). u?(k) €
[7 are input sequences that drive zl. 2§ to the ori-
gin, respectively. Then, for 0 < a < L. the input
sequence aul (k) + (1 — a)u?(k) € U drives ax, +
(1—a)z? to the origin. Hence, azh+(1—a)xd € C'x
and the convexity of Uy follows.

Let g € Cn. Suppose u(k) € UV is an input
sequence that drives zg to the origin. Then the
input sequence —u(k) € U drives —z¢ to the origin.
Hence, —uy € Cn and the symmetry of C'n follows.

0

We further explore the structure of (. Ior

this. first notice that
k—1
a(k)y = Afwg + > AT Bu(h).

(=0

Then &g € Cy iff there exists u(k) € U7 such that

N-1
0= AN-?TU + Z AN—i-1 Bu(?)

=0
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or
N-1

Ty = — Z ATV Bu(d).
=0
Hence, C'n is simply the set of all points that are
linear combinations of A="'B, i = 0,---,N — 1
whose coefficients are in /. This implies Cy4q is
the set of all points of the form zg = zo+A~ V"1 Bu
such that 2o € Cy and v € U. Hence, Cy4y is the
polyhedron that can be represented as:

(JN+1 = Ui‘oECN{‘TU = .io + A—N_lb?L U € U}

=CnU [Ufoeaci\]{zo = Io+ ANy ue U}]
2)

Lemma 2.1: For N > n, there exists an open
ball B"(0,r) C Cn.

Pmof From the controllability of (A, B), A=i"!
B,:=10,---,n—1 are linearly independent. More-
over, U contains a nonempty interior that contains
the origin. Hence, the lemma follows. a

Similarly, we can qhow the following lemma.

CNCC’M forall M > N +n..

Lemma 2
Theorem Q.H. Coo = Up<cN<oCN = hm Cn.
N-ooo

Proof: From Fact 2.2, it is trivial to show that
Coo D UpecNeooCn. From Lemma 2.1, for N > n,
there exists an open ball B*(0,r) C Cy. Hence,
given zg € (., there exists M such that there
exists a input sequence in U for which z(i) € Cn
for all © > M. This implies there exists u(z) € U
such that z(N + M) = 0. Thus, 29 € Cnsm
and Cs C Up<nN<ooCn. Hence, the first equality
follows. The second equality is obvious from Fact
2.3. a

Clearly, C'n is closed for all N. However, from
Theorem 2.2 and Lemma 2.2, it can be shown that
', 1s open.

Corollary 2.1: C' is open.

Proof: Suppose the contrary. Then there exists
zg € 0C. From the proof of Theorem 2.2, for
Ty, there exists L such that there exists an input
sequence in U for which z(L) = 0. Then z¢ € Cp.
This is a contradiction from Lemma 2.2 and the
corollary follows. g

We now show that for big enough N, Cn can
arbitrarily closely approximate C,

Theoremn 2.3: If W is a compact set contained
in Cy,, there exists N’ such that W C Cy for all
N > N’

Proof: From the proof of Theorem 2.2, for any
g € Coo, there exists L such that there exists an
input sequence in U for which z(L) = 0. Suppose

there doesn’t exist N/ such that W C Cp for all
N > N'. Then there exists a sequence {z;} such
that z; € W, z; € C; and z; € C;_1. Since W is
compact, the sequence converges to a point 2 € W.
However, from Lemma 2.2, Z &€ Cy for any N and,
thus, 2 € Cu. This is a contradiction and the
theorem follows. m

Let {zN}?¥ be the set of all vertices of C'y.

For each 1, le can be represented as

N-1
N = — Z AT BUN (),
1=0

where uMN (5) € U. Then the input [ulN(0) - - uM (N

—1)] drlves 2N to the origin in N steps. For any
z € Chn, there exist nonnegative real numbers a;’s
for which 1a7 < 1 such that & = 3", «a; 11\
Then Zlea ul¥ (k) € Uforall0 <k < N—1and
the open loop Control e a;ul (0) - PN ajud
(N — 1)] drives & to the origin in N steps.

From Theorem 2.3, given a compact set W
contained in C,, there exists N > n such that
W C Cn. We now construct an exponentially sta-
bilizing linear periodic variable structure feedback
control law on Cn. Suppose z € C'ny. Then there
exists a face!, S;, of the polyhedron Cx such that
x is contained in the polyhedral sector defined by
the origin and S;. Moreover, there exists a unique
set of nonnegative real numbers a’ % for which
SP,al < 1 such that z = 1%1 N where
{z} is the set of all vertices of S;. Now define

: :a$2 1

SN D) EAREEAS 2

n

= [u'(0) -

For z € Cn_q, define
wy(z) = Z a7l =1 (0)

= [ (0) N T O

T

where {271} is the set of all vertices of the face of
Cn—1 whose corresponding polyheral sector con-
tains ¢ and {aX;"!} is a unique set of nonnega-
tive real number% for which 3%, a1 < 1 such

iL’L
that z = laN lzfv I, Now define up(+) for

'In this paper, a face is a simplice that is obtained by
possibly dividing a face into simplices.
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k=2,---.,n— 1, in similar way. For the sampling
times greater than n — 1, we define

”’7)77r+/[('):“’(/(')- q:().’...’nv_l. p:l.’.'.

To this end, we have designed a linear periodic
variable structure controller.
Now consider an initial coudition zq € Ch.

Then. it holds that

w(1) = Azg + Bo(ug(xo))

—AZ(LW' —}—BZ(LL 7

i=1 =1

) € Cnoy.

Hence, 1y is well defined at z(1) and, thus,

2(2) = Az(1) + Bo(u(z(1)))

12(1’\“1 _1+BZ(1 N i\"l

=1 =1
Similarly, (i) € Cny_; for & = 3.---.n. To this
end, Fact 2.3 dictates that the proposed feedback
control law is well-defined for all zy € C'y through-

) 6 (:’\‘_2.

out the trajectory.
We now examine the stability of the proposed
control law. For this, we need the follwong facts.
Fact 2.4: There exists @ € [0,1) such that
(,']\7_,,, C ,!f”‘C'N.
Proof: The proof is trivial from Lemma 2.2. O
Fact 2.5: x(pn+q) € p?"Cn_, C 37N,
Proof: The proof is trivial from Fact 2.4 and
the construction of the control. a

Let rpap 1= MaXgency |7 and rpp, = mingeac

|r]. Then, from Fact 2.5

r(n—1)¢

. it holds that xy, 2 (1), --
M-I-C'N. This implies

Trnin

(= D] € o] 2

THIH

((p+n-1) €

7ol 2 (D). -

Similarly. it holds that z(pn), - -
3o Jrol ¢ ~ and. in turn.

Tmin

1 771(11

le(pn)] - e ((p4+ Dn = 1) < g7z

‘min
Hence, for xg € C'w. it holds that

2 (k)] < Jwo| —22E 3k

Pmin3"
Hence, the closed loop system with the above con-
tol is exponentially stable on C'ny. To this end, we
have the following Theorem.

Theorem 2.5: Given any compact subset W
of (",. there exists N such that W C Cn and
System (1) can be exponentially stabilized on Cpn
by a linear periodic variable structure controller.
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