The human faces do not have distinct features unlike other general objects. In general the features of eyes, nose and mouth which are first recognized when human being see the face are defined. These features have different characteristics depending on different human face. In this paper, We propose a face recognition algorithm using the hidden Markov model(HMM). In the preprocessing stage, we find edges of a face using the locally adaptive threshold scheme and extract features based on generic knowledge of a face, then construct a database with extracted features. In training stage, we generate HMM parameters for each person by using the forward-backward algorithm. In the recognition stage, we apply probability values calculated by the HMM to input data. Then the input face is recognized by the euclidean distance of face feature vector and the cross-correlation between the input image and the database image. Computer simulation shows that the proposed HMM algorithm gives higher recognition rate compared with conventional face recognition algorithms.
Many studies have focused on the optimal design of multi-stage forging molds. For optimal design progress, geometry parameters must be automatically modified, and the updated analysis file delivered. However, existing automation processes set and change parameters at the analysis input file stage, limiting them to simpler tasks like 2D shapes and basic process conditions (e.g., friction, elasticity), making it challenging to handle 3D asymmetric shapes. To address these limitations, an automated program was developed that modifies geometry directly in the CAD model, enabling the automation of complex 3D and asymmetrical shapes. In this process, a 3D mold is generated immediately after the drawing is input, automating the design of both the product and the mold without manual intervention. The program's effectiveness was demonstrated in the design and forging analysis of a multi-stage mold for M10 hex head bolts. This fully automated program reduced preprocessing time by approximately 6.7 times and successfully performed sensitivity analysis without manual input.
얼굴인식(face recognition)은 스마트 감시 시스템, 공항 출입국관리, 스마트 기기의 사용자 인증 등 매우 다양한 용도로 활용되고 있다. 얼굴인식은 패턴인식(pattern recognition), 컴퓨터 비전(computer vision) 등에서 연구가 활발하게 진행되고 있으며 높은 인식 성능을 달성하였다. 하지만 입력된 얼굴영상의 특성(예 : 비 정면 얼굴)에 따라 동일한 얼굴인식 시스템의 성능이 크게 저하될 수 있는 문제점을 가지고 있다. 이러한 문제점을 극복하기 위해, 본 논문에서는 얼굴인식 시스템에 입력된 얼굴영상에 대하여 얼굴인식 측면에서의 사용 적합 여부를 판정하는 방법을 제안한다. 제안하는 방법은, 사전에 기준으로 정한 적합 얼굴영상들의 최적 조합으로 입력 얼굴영상을 복원하고, 복원 에러를 문턱값과 비교하여 사용 적합 여부를 결정한다. 얼굴영상에 포함된 조명변화가 사용 적합 여부를 판정하는데 미치는 영향을 감소시키기 위해, 기준 적합 얼굴영상들과 입력 얼굴영상들에 조명 보상을 위한 전처리(preprocessing) 과정을 수행한다. 실험결과, 제안하는 방법은 얼굴이 비 정면(non-frontal)인 경우나 얼굴정렬(face alignment)이 부정확한 경우 입력 얼굴영상을 얼굴인식에 부적합으로 판정할 수 있는 것으로 확인되었다. $64{\times}64$ 픽셀 크기의 얼굴영상 한 장을 판정하는데 불과 3ms의 처리시간을 가지므로 적합으로 판정된 입력 얼굴영상에 대해서만 얼굴인식을 수행함으로써 계산시간을 절약하고, 얼굴영상 특성에 따라 인식 성능이 급격히 저하되는 문제를 극복할 수 있을 것으로 기대한다.
사용자가 제스처를 통해 입력을 할 수 있는 방안들 중에서 근전도(EMG, Electromyography)를 통한 제스처 인식은 근육 내 작은 전극을 통해 사용자의 움직임을 감지하고 이를 입력 방법으로 사용할 수 있는 방법이다. EMG 데이터를 통해 사용자 제스처를 분류하기 위해서는 사용자로부터 수집된 EMG Raw 데이터를 머신러닝으로 학습하여야 하는데 이를 위해서는 EMG 데이터를 전처리 과정을 통해 특징을 추출하여야 한다. EMG 특성은 IEMG(Integrated EMG), MAV(Mean Absolute Value), SSI(Simple Sqaure Integral), VAR(VARiance), RMS(Root Mean Square) 등과 같은 수식을 통해서 나타낼 수 있다. 또한, 제스처를 입력으로 사용하기 위해서는 사용자가 입력하는 데 필요한 지각, 인지, 반응에 필요한 시간을 기준으로 제스처 분류가 가능한 시간을 알아내야 한다. 이를 위해 최대 1,000ms에서 최소 100ms까지 세그먼트 사이즈를 변화시켜 특징을 추출 후 제스처 분류가 가능한 세그먼트 사이즈를 찾아낸다. 특히 데이터 학습은 overlapped segmentation 방법을 통해 데이터와 데이터 사이 간격을 줄여 학습 데이터 개수를 늘린다. 이를 통해 KNN, SVC, RF, XGBoost 4가지 머신러닝 방식을 통해 이를 학습하고 결과를 도출한다. 실험 결과 실시간으로 사용자의 제스처 입력이 가능한 최대 세그먼트 사이즈인 200ms에서 KNN, SVC, RF, XGboost 4가지 모든 모델에서 96% 이상의 정확도를 도출하였다.
KOSPI는 정치 및 경제를 포함한 다양한 요소에 영향을 받는 관계로 정확한 단기 KOSPI 예측 방법론 개발은 매우 어려운 문제로 여겨지고 있다. 본 논문에서는 가중 퍼지소속함수 기반 신경망(NEWFM; neural network with weighted fuzzy membership functions)의 특징 추출기법을 사용하여 5일 동안의 주가 단기추세를 예측하는 방안을 제안한다. 비중복면적 분산 측정법에 의해 중요도가 가장 낮은 특징입력을 하나씩 제거하면서 최소의 특징입력을 선택한다. 특징입력으로써 기술지표를 이용하여 얻은 데이터를 웨이블릿 변환을 이용하여 39개의 계수들을 추출한다. 이들 39개의 특징입력 중 비중복면적 분산측정법에 의해서 추출된 12개의 계수가 사용된다. 제안된 방법에서는 민감도가 72.79%, 특이도가 74.76%, 정확도가 73.84%를 나타낸다.
본 논문에서는 단일 수신기가 사용되는 환경에서 정확한 거리 추정을 위해 심층 인공신경망 (Deep Neural Network, DNN)을 활용한 Smoothed Received Signal Strength Indicator (RSSI) 기반 거리 추정 기법을 제안한다. 제안 기법은 거리 추정 정확도 향상을 위해 Data Splitting, 결측치 대치, Smoothing 단계로 구성된 전처리 과정을 수행하여 Smoothed RSSI 값을 도출한다. 도출된 다수의 Smoothed RSSI 값은 Multi-Input Single-Output(MISO) DNN 모델의 Input Data로 사용되며 Input Layer와 Hidden Layer를 통과하여 최종적으로 Output Layer에서 추정 거리로 반환된다. 제안 기법의 우수성을 입증하기 위해 제안 기법과 선형회귀 기반 거리 추정 기법의 성능을 비교하였다. 실험 결과, 제안 기법이 선형회귀 기반 거리 추정 기법 대비 29.09% 더 높은 거리 추정 정확도를 보였다.
본 연구는 메꽃과 6종의 식물에 대해 신속하고 비파괴적으로 분류하기 위해 근적외선(Vis-NIR) 스펙트럼을 이용하였고 데이터의 전처리와 머신러닝 기술을 적용하였다. 전국적으로 분포하는 메꽃과 6종에 대해 야외에서 휴대용 분광기를 이용하여 판별하였다. 식물의 잎의 표면에서 400~1,075 nm의 근적외선 스펙트럼(1.5 nm)을 수집하였다. 수집된 스펙트럼 데이터는 3가지의 전처리와 raw데이터를 이용하였고 4종류의 머신러닝 모델을 적용하여 높은 판별 정확도를 확인하였다. 전처리와 머신러닝 모델의 조합을 통해 분석된 판별의 정확도는 43~99%의 범위로 분석되었고, standard normal variate 전처리와 support vector machine 머신러닝 모델의 조합에서 판별 정확도가 98.6%로 가장 높게 나타났다. 본 연구에서 수집된 스펙트럼은 식물의 성장단계, 다양한 측정 지역 및 잎에서의 측정 위치 등과 같은 요인과 더불어 데이터 분석을 위한 조건으로 최적의 전처리와 머신러닝 기술을 적용한다면 메꽃과 식물의 야외에서의 정확한 분류가 가능하고 이들 식물의 효과적인 관리와 모니터링에 활용할 수 있을 것으로 판단되었다.
다양한 종류의 컬러 영상 콘텐츠에 포함되어 있는 사람의 얼굴 영역은 다른 사람들과 특정인을 구별해 줄 수 있는 개인의 정보에 해당하므로, 입력된 컬러 영상으로부터 가려지지 않은 사람의 얼굴 영역들을 정확하게 검출하는 작업은 매우 중요하다. 본 논문에서는 입력되는 컬러 영상으로부터 기계 학습 알고리즘 중의 하나인 딥러닝 알고리즘을 이용하여 사람의 얼굴 영역을 정확하게 검출하는 방법을 제안한다. 본 논문에서 제안된 방법에서는 먼저 RGB 색상 모델로 입력되는 영상을 $YC_bC_r$ 색상 모델로 변경한 다음, 기 학습된 타원형의 피부 색상 분포 모델을 활용하여 다른 영역들은 제거하고 사람의 피부 영역만을 먼저 분할한다. 그런 다음, CNN 모델 기반의 딥러닝 알고리즘을 적용하여 이전 단계에서 검출된 피부 영역 내에서 사람의 얼굴 영역을 강인하게 검출한다. 실험 결과에서는 제안된 방법이 입력되는 다양한 컬러 영상으로부터 사람의 얼굴 영역들을 기존의 방법에 비해 보다 효율적으로 분할한다는 것을 보여준다. 본 논문에서 제안된 얼굴 영역 검출 방법은 영상 보안, 물체 인식 및 추적, 얼굴 인식 등과 같은 멀티미디어 및 형태 인식과 관련된 실제적인 응용 분야에서 매우 유용하게 활용될 것으로 기대된다.
Forecasting of electricity demand have difficulty in adapting to abrupt weather changes along with a radical shift in major regional and global climates. This has lead to increasing attention to research on the immediate and accurate forecasting model. Technically, this implies that a model requires only a few input variables all of which are easily obtainable, and its predictive performance is comparable with other competing models. To meet the ends, this paper presents an energy demand forecasting model that uses the variable selection or extraction methods of data mining to select only relevant input variables, and employs support vector regression method for accurate prediction. Also, it proposes a novel performance measure for time-series prediction, shift index, followed by description on preprocessing procedure. A comparative evaluation of the proposed method with other representative data mining models such as an auto-regression model, an artificial neural network model, an ordinary support vector regression model was carried out for obtaining the forecast of monthly electricity demand from 2000 to 2008 based on data provided by Korea Energy Economics Institute. Among the models tested, the proposed method was shown promising results than others.
An application of Gammatone auditory filterbank for emotion recognition from speech is described in this paper. Gammatone filterbank is a bank of Gammatone filters which are used as a preprocessing stage before applying feature extraction methods to get the most relevant features for emotion recognition from speech. In the feature extraction step, the energy value of output signal of each filter is computed and combined with other of all filters to produce a feature vector for the learning step. A feature vector is estimated in a short time period of input speech signal to take the advantage of dependence on time domain. Finally, in the learning step, Hidden Markov Model (HMM) is used to create a model for each emotion class and recognize a particular input emotional speech. In the experiment, feature extraction based on Gammatone filterbank (GTF) shows the better outcomes in comparison with features based on Mel-Frequency Cepstral Coefficient (MFCC) which is a well-known feature extraction for speech recognition as well as emotion recognition from speech.
이메일무단수집거부
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.