• 제목/요약/키워드: Input preprocessing

검색결과 298건 처리시간 0.035초

HMM을 이용한 얼굴에서 입 특징점 검출에 관한 연구 (A Study on Mouth Features Detection in Face using HMM)

  • 김희철;정찬주;곽종서;김문환;배철수;나상동
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2002년도 춘계학술발표논문집 (상)
    • /
    • pp.647-650
    • /
    • 2002
  • The human faces do not have distinct features unlike other general objects. In general the features of eyes, nose and mouth which are first recognized when human being see the face are defined. These features have different characteristics depending on different human face. In this paper, We propose a face recognition algorithm using the hidden Markov model(HMM). In the preprocessing stage, we find edges of a face using the locally adaptive threshold scheme and extract features based on generic knowledge of a face, then construct a database with extracted features. In training stage, we generate HMM parameters for each person by using the forward-backward algorithm. In the recognition stage, we apply probability values calculated by the HMM to input data. Then the input face is recognized by the euclidean distance of face feature vector and the cross-correlation between the input image and the database image. Computer simulation shows that the proposed HMM algorithm gives higher recognition rate compared with conventional face recognition algorithms.

  • PDF

M10 육각 머리 볼트 다단 금형 설계 및 단조 성형해석 자동화 프로그램 개발 (Development of M10 Hex Head Bolt Multi-stage Die Design and Forging Analysis Automation Program)

  • 오민성;이사랑;최정묵;홍석무
    • 소성∙가공
    • /
    • 제33권5호
    • /
    • pp.341-347
    • /
    • 2024
  • Many studies have focused on the optimal design of multi-stage forging molds. For optimal design progress, geometry parameters must be automatically modified, and the updated analysis file delivered. However, existing automation processes set and change parameters at the analysis input file stage, limiting them to simpler tasks like 2D shapes and basic process conditions (e.g., friction, elasticity), making it challenging to handle 3D asymmetric shapes. To address these limitations, an automated program was developed that modifies geometry directly in the CAD model, enabling the automation of complex 3D and asymmetrical shapes. In this process, a 3D mold is generated immediately after the drawing is input, automating the design of both the product and the mold without manual intervention. The program's effectiveness was demonstrated in the design and forging analysis of a multi-stage mold for M10 hex head bolts. This fully automated program reduced preprocessing time by approximately 6.7 times and successfully performed sensitivity analysis without manual input.

얼굴영상의 얼굴인식 적합성 판정 방법 (A Method for Determining Face Recognition Suitability of Face Image)

  • 이승호
    • 한국산학기술학회논문지
    • /
    • 제19권11호
    • /
    • pp.295-302
    • /
    • 2018
  • 얼굴인식(face recognition)은 스마트 감시 시스템, 공항 출입국관리, 스마트 기기의 사용자 인증 등 매우 다양한 용도로 활용되고 있다. 얼굴인식은 패턴인식(pattern recognition), 컴퓨터 비전(computer vision) 등에서 연구가 활발하게 진행되고 있으며 높은 인식 성능을 달성하였다. 하지만 입력된 얼굴영상의 특성(예 : 비 정면 얼굴)에 따라 동일한 얼굴인식 시스템의 성능이 크게 저하될 수 있는 문제점을 가지고 있다. 이러한 문제점을 극복하기 위해, 본 논문에서는 얼굴인식 시스템에 입력된 얼굴영상에 대하여 얼굴인식 측면에서의 사용 적합 여부를 판정하는 방법을 제안한다. 제안하는 방법은, 사전에 기준으로 정한 적합 얼굴영상들의 최적 조합으로 입력 얼굴영상을 복원하고, 복원 에러를 문턱값과 비교하여 사용 적합 여부를 결정한다. 얼굴영상에 포함된 조명변화가 사용 적합 여부를 판정하는데 미치는 영향을 감소시키기 위해, 기준 적합 얼굴영상들과 입력 얼굴영상들에 조명 보상을 위한 전처리(preprocessing) 과정을 수행한다. 실험결과, 제안하는 방법은 얼굴이 비 정면(non-frontal)인 경우나 얼굴정렬(face alignment)이 부정확한 경우 입력 얼굴영상을 얼굴인식에 부적합으로 판정할 수 있는 것으로 확인되었다. $64{\times}64$ 픽셀 크기의 얼굴영상 한 장을 판정하는데 불과 3ms의 처리시간을 가지므로 적합으로 판정된 입력 얼굴영상에 대해서만 얼굴인식을 수행함으로써 계산시간을 절약하고, 얼굴영상 특성에 따라 인식 성능이 급격히 저하되는 문제를 극복할 수 있을 것으로 기대한다.

EMG 데이터를 이용한 머신러닝 기반 실시간 제스처 분류 연구 (A Study on Machine Learning-Based Real-Time Gesture Classification Using EMG Data)

  • 박하제;양희영;최소진;김대연;남춘성
    • 인터넷정보학회논문지
    • /
    • 제25권2호
    • /
    • pp.57-67
    • /
    • 2024
  • 사용자가 제스처를 통해 입력을 할 수 있는 방안들 중에서 근전도(EMG, Electromyography)를 통한 제스처 인식은 근육 내 작은 전극을 통해 사용자의 움직임을 감지하고 이를 입력 방법으로 사용할 수 있는 방법이다. EMG 데이터를 통해 사용자 제스처를 분류하기 위해서는 사용자로부터 수집된 EMG Raw 데이터를 머신러닝으로 학습하여야 하는데 이를 위해서는 EMG 데이터를 전처리 과정을 통해 특징을 추출하여야 한다. EMG 특성은 IEMG(Integrated EMG), MAV(Mean Absolute Value), SSI(Simple Sqaure Integral), VAR(VARiance), RMS(Root Mean Square) 등과 같은 수식을 통해서 나타낼 수 있다. 또한, 제스처를 입력으로 사용하기 위해서는 사용자가 입력하는 데 필요한 지각, 인지, 반응에 필요한 시간을 기준으로 제스처 분류가 가능한 시간을 알아내야 한다. 이를 위해 최대 1,000ms에서 최소 100ms까지 세그먼트 사이즈를 변화시켜 특징을 추출 후 제스처 분류가 가능한 세그먼트 사이즈를 찾아낸다. 특히 데이터 학습은 overlapped segmentation 방법을 통해 데이터와 데이터 사이 간격을 줄여 학습 데이터 개수를 늘린다. 이를 통해 KNN, SVC, RF, XGBoost 4가지 머신러닝 방식을 통해 이를 학습하고 결과를 도출한다. 실험 결과 실시간으로 사용자의 제스처 입력이 가능한 최대 세그먼트 사이즈인 200ms에서 KNN, SVC, RF, XGboost 4가지 모든 모델에서 96% 이상의 정확도를 도출하였다.

웨이블릿 변환과 퍼지 신경망을 이용한 단기 KOSPI 예측 (Forecasting Short-Term KOSPI using Wavelet Transforms and Fuzzy Neural Network)

  • 신동근;정경용
    • 한국콘텐츠학회논문지
    • /
    • 제11권6호
    • /
    • pp.1-7
    • /
    • 2011
  • KOSPI는 정치 및 경제를 포함한 다양한 요소에 영향을 받는 관계로 정확한 단기 KOSPI 예측 방법론 개발은 매우 어려운 문제로 여겨지고 있다. 본 논문에서는 가중 퍼지소속함수 기반 신경망(NEWFM; neural network with weighted fuzzy membership functions)의 특징 추출기법을 사용하여 5일 동안의 주가 단기추세를 예측하는 방안을 제안한다. 비중복면적 분산 측정법에 의해 중요도가 가장 낮은 특징입력을 하나씩 제거하면서 최소의 특징입력을 선택한다. 특징입력으로써 기술지표를 이용하여 얻은 데이터를 웨이블릿 변환을 이용하여 39개의 계수들을 추출한다. 이들 39개의 특징입력 중 비중복면적 분산측정법에 의해서 추출된 12개의 계수가 사용된다. 제안된 방법에서는 민감도가 72.79%, 특이도가 74.76%, 정확도가 73.84%를 나타낸다.

심층 인공신경망을 활용한 Smoothed RSSI 기반 거리 추정 (Smoothed RSSI-Based Distance Estimation Using Deep Neural Network)

  • 권혁돈;이솔비;권정혁;김의직
    • 사물인터넷융복합논문지
    • /
    • 제9권2호
    • /
    • pp.71-76
    • /
    • 2023
  • 본 논문에서는 단일 수신기가 사용되는 환경에서 정확한 거리 추정을 위해 심층 인공신경망 (Deep Neural Network, DNN)을 활용한 Smoothed Received Signal Strength Indicator (RSSI) 기반 거리 추정 기법을 제안한다. 제안 기법은 거리 추정 정확도 향상을 위해 Data Splitting, 결측치 대치, Smoothing 단계로 구성된 전처리 과정을 수행하여 Smoothed RSSI 값을 도출한다. 도출된 다수의 Smoothed RSSI 값은 Multi-Input Single-Output(MISO) DNN 모델의 Input Data로 사용되며 Input Layer와 Hidden Layer를 통과하여 최종적으로 Output Layer에서 추정 거리로 반환된다. 제안 기법의 우수성을 입증하기 위해 제안 기법과 선형회귀 기반 거리 추정 기법의 성능을 비교하였다. 실험 결과, 제안 기법이 선형회귀 기반 거리 추정 기법 대비 29.09% 더 높은 거리 추정 정확도를 보였다.

근적외선 분광법과 머신러닝을 이용한 메꽃과(Convolvulaceae) 식물의 분류 (Classification of Convolvulaceae plants using Vis-NIR spectroscopy and machine learning)

  • 이용호;손수인;홍선희;김창석;나채선;김인순;장민상;오영주
    • 환경생물
    • /
    • 제39권4호
    • /
    • pp.581-589
    • /
    • 2021
  • 본 연구는 메꽃과 6종의 식물에 대해 신속하고 비파괴적으로 분류하기 위해 근적외선(Vis-NIR) 스펙트럼을 이용하였고 데이터의 전처리와 머신러닝 기술을 적용하였다. 전국적으로 분포하는 메꽃과 6종에 대해 야외에서 휴대용 분광기를 이용하여 판별하였다. 식물의 잎의 표면에서 400~1,075 nm의 근적외선 스펙트럼(1.5 nm)을 수집하였다. 수집된 스펙트럼 데이터는 3가지의 전처리와 raw데이터를 이용하였고 4종류의 머신러닝 모델을 적용하여 높은 판별 정확도를 확인하였다. 전처리와 머신러닝 모델의 조합을 통해 분석된 판별의 정확도는 43~99%의 범위로 분석되었고, standard normal variate 전처리와 support vector machine 머신러닝 모델의 조합에서 판별 정확도가 98.6%로 가장 높게 나타났다. 본 연구에서 수집된 스펙트럼은 식물의 성장단계, 다양한 측정 지역 및 잎에서의 측정 위치 등과 같은 요인과 더불어 데이터 분석을 위한 조건으로 최적의 전처리와 머신러닝 기술을 적용한다면 메꽃과 식물의 야외에서의 정확한 분류가 가능하고 이들 식물의 효과적인 관리와 모니터링에 활용할 수 있을 것으로 판단되었다.

기계 학습 알고리즘을 이용한 효과적인 대상 영역 분할 (Effective Detection of Target Region Using a Machine Learning Algorithm)

  • 장석우;이경주;정명희
    • 한국산학기술학회논문지
    • /
    • 제19권5호
    • /
    • pp.697-704
    • /
    • 2018
  • 다양한 종류의 컬러 영상 콘텐츠에 포함되어 있는 사람의 얼굴 영역은 다른 사람들과 특정인을 구별해 줄 수 있는 개인의 정보에 해당하므로, 입력된 컬러 영상으로부터 가려지지 않은 사람의 얼굴 영역들을 정확하게 검출하는 작업은 매우 중요하다. 본 논문에서는 입력되는 컬러 영상으로부터 기계 학습 알고리즘 중의 하나인 딥러닝 알고리즘을 이용하여 사람의 얼굴 영역을 정확하게 검출하는 방법을 제안한다. 본 논문에서 제안된 방법에서는 먼저 RGB 색상 모델로 입력되는 영상을 $YC_bC_r$ 색상 모델로 변경한 다음, 기 학습된 타원형의 피부 색상 분포 모델을 활용하여 다른 영역들은 제거하고 사람의 피부 영역만을 먼저 분할한다. 그런 다음, CNN 모델 기반의 딥러닝 알고리즘을 적용하여 이전 단계에서 검출된 피부 영역 내에서 사람의 얼굴 영역을 강인하게 검출한다. 실험 결과에서는 제안된 방법이 입력되는 다양한 컬러 영상으로부터 사람의 얼굴 영역들을 기존의 방법에 비해 보다 효율적으로 분할한다는 것을 보여준다. 본 논문에서 제안된 얼굴 영역 검출 방법은 영상 보안, 물체 인식 및 추적, 얼굴 인식 등과 같은 멀티미디어 및 형태 인식과 관련된 실제적인 응용 분야에서 매우 유용하게 활용될 것으로 기대된다.

Support Vector Regression에 기반한 전력 수요 예측 (Electricity Demand Forecasting based on Support Vector Regression)

  • 이형로;신현정
    • 산업공학
    • /
    • 제24권4호
    • /
    • pp.351-361
    • /
    • 2011
  • Forecasting of electricity demand have difficulty in adapting to abrupt weather changes along with a radical shift in major regional and global climates. This has lead to increasing attention to research on the immediate and accurate forecasting model. Technically, this implies that a model requires only a few input variables all of which are easily obtainable, and its predictive performance is comparable with other competing models. To meet the ends, this paper presents an energy demand forecasting model that uses the variable selection or extraction methods of data mining to select only relevant input variables, and employs support vector regression method for accurate prediction. Also, it proposes a novel performance measure for time-series prediction, shift index, followed by description on preprocessing procedure. A comparative evaluation of the proposed method with other representative data mining models such as an auto-regression model, an artificial neural network model, an ordinary support vector regression model was carried out for obtaining the forecast of monthly electricity demand from 2000 to 2008 based on data provided by Korea Energy Economics Institute. Among the models tested, the proposed method was shown promising results than others.

Emotion recognition from speech using Gammatone auditory filterbank

  • 레바부이;이영구;이승룡
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2011년도 한국컴퓨터종합학술대회논문집 Vol.38 No.1(A)
    • /
    • pp.255-258
    • /
    • 2011
  • An application of Gammatone auditory filterbank for emotion recognition from speech is described in this paper. Gammatone filterbank is a bank of Gammatone filters which are used as a preprocessing stage before applying feature extraction methods to get the most relevant features for emotion recognition from speech. In the feature extraction step, the energy value of output signal of each filter is computed and combined with other of all filters to produce a feature vector for the learning step. A feature vector is estimated in a short time period of input speech signal to take the advantage of dependence on time domain. Finally, in the learning step, Hidden Markov Model (HMM) is used to create a model for each emotion class and recognize a particular input emotional speech. In the experiment, feature extraction based on Gammatone filterbank (GTF) shows the better outcomes in comparison with features based on Mel-Frequency Cepstral Coefficient (MFCC) which is a well-known feature extraction for speech recognition as well as emotion recognition from speech.