DOI QR코드

DOI QR Code

Effective Detection of Target Region Using a Machine Learning Algorithm

기계 학습 알고리즘을 이용한 효과적인 대상 영역 분할

  • 장석우 (안양대학교 소프트웨어학과) ;
  • 이경주 (숭실대학교 컴퓨터학과) ;
  • 정명희 (안양대학교 소프트웨어학과)
  • Received : 2018.04.26
  • Accepted : 2018.05.04
  • Published : 2018.05.31

Abstract

Since the face in image content corresponds to individual information that can distinguish a specific person from other people, it is important to accurately detect faces not hidden in an image. In this paper, we propose a method to accurately detect a face from input images using a deep learning algorithm, which is one of the machine learning methods. In the proposed method, image input via the red-green-blue (RGB) color model is first changed to the luminance-chroma: blue-chroma: red-chroma ($YC_bC_r$) color model; then, other regions are removed using the learned skin color model, and only the skin regions are segmented. A CNN model-based deep learning algorithm is then applied to robustly detect only the face region from the input image. Experimental results show that the proposed method more efficiently segments facial regions from input images. The proposed face area-detection method is expected to be useful in practical applications related to multimedia and shape recognition.

다양한 종류의 컬러 영상 콘텐츠에 포함되어 있는 사람의 얼굴 영역은 다른 사람들과 특정인을 구별해 줄 수 있는 개인의 정보에 해당하므로, 입력된 컬러 영상으로부터 가려지지 않은 사람의 얼굴 영역들을 정확하게 검출하는 작업은 매우 중요하다. 본 논문에서는 입력되는 컬러 영상으로부터 기계 학습 알고리즘 중의 하나인 딥러닝 알고리즘을 이용하여 사람의 얼굴 영역을 정확하게 검출하는 방법을 제안한다. 본 논문에서 제안된 방법에서는 먼저 RGB 색상 모델로 입력되는 영상을 $YC_bC_r$ 색상 모델로 변경한 다음, 기 학습된 타원형의 피부 색상 분포 모델을 활용하여 다른 영역들은 제거하고 사람의 피부 영역만을 먼저 분할한다. 그런 다음, CNN 모델 기반의 딥러닝 알고리즘을 적용하여 이전 단계에서 검출된 피부 영역 내에서 사람의 얼굴 영역을 강인하게 검출한다. 실험 결과에서는 제안된 방법이 입력되는 다양한 컬러 영상으로부터 사람의 얼굴 영역들을 기존의 방법에 비해 보다 효율적으로 분할한다는 것을 보여준다. 본 논문에서 제안된 얼굴 영역 검출 방법은 영상 보안, 물체 인식 및 추적, 얼굴 인식 등과 같은 멀티미디어 및 형태 인식과 관련된 실제적인 응용 분야에서 매우 유용하게 활용될 것으로 기대된다.

Keywords

References

  1. J.-G. Ko, Y.-S. Bae, J.-Y. Park, and K. Park, "Technologies Trends in Image Big Data Analysis," Electronics and Telecommunications Trends, Vol. 29, No. 4, pp. 21-29, August 2014.
  2. S. Zhang, P. McCullagh, H. Zheng, and C. Nugent, "Situation Awareness Inferred from Posture Transition and Location: Derived from Smartphone and Smart home Sensors, IEEE Transactions on Human-Machine Systems, Vol. 47, Issue 6, pp. 814-821, 2017. DOI: https://doi.org/10.1109/THMS.2017.2693238
  3. T.-H. Tsai, W.-H. Cheng, C.-W. You, M.-C. Hu, A. W. Tsui, and H.-Y. Chi, "Learning and Recognition of On-Premise Signs From Weakly Labeled Street View Images," IEEE Transactions on Image Processing, Vol. 23, No. 3, pp. 1047-1059, 2014. DOI: https://doi.org/10.1109/TIP.2014.2298982
  4. R.-L. Hsu, M. Abdel-Mottaleb, and A. K. Jain, "Face Detection in Color Images," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 24, No. 5, pp. 696-706, May 2002. DOI: https://doi.org/10.1109/34.1000242
  5. Y. N. Chae, J.-N. Chung, and H. S. Yang, "Efficient Face Detection Using Adaboost and Facial Color," Journal of Korean Institute of Information Science and Engineers, Vol. 36, No. 7, pp. 548-558, 2009.
  6. K.-M. Lee, "Component-based Face Detection and Verification," Pattern Recognition Letters, Vol. 29, pp. 200-214, 2008. DOI: https://doi.org/10.1016/j.patrec.2007.09.013
  7. C. Zhang and Z. Zhang, "Improving Multiview Face Detection with Multi-Task Deep Convolutional Neural Networks, In Proc. of the IEEE Winter Conference on Applications of Computer Vision, pp. 1036-1041, 2014. DOI: https://doi.org/10.1109/WACV.2014.6835990
  8. D. Triantafyllidou, P. Nousi, and A. Tefas, "Fast Deep Convolutional Face Detection in the Wild Exploiting Hard Sample Mining," Big Data Research, July 2017.
  9. L. Ren, J. Lu, J. Feng, and J. Zhou, "Multi-Modal Uniform Deep Learning for RGB-D Person Re-Identification," Pattern Recognition, Vol. 72, pp. 446-457, December 2017. DOI: https://doi.org/10.1016/j.patcog.2017.06.037
  10. M. Li, J. Wei, X. Zheng, and M. L. Bolton, "A Formal Machine Learning Approach to Generating Human-Machine Interfaces from Task Models," IEEE Transactions on Human Machine Systems, Vol. 47, No. 6, pp. 822-833, 2017. DOI: https://doi.org/10.1109/THMS.2017.2700630
  11. O. M. Parkhi, A. Vedaldi, and A. Zisserman, "Deep Face Recognition," In Proc. of the 26th British Machine Vision Conference, pp. 1-12, September 2015. DOI: https://doi.org/10.5244/C.29.41
  12. Jae-Ho Bae, Development of Dynamic Magnetic Field Emulator for Smart Multi-Card, J. Soc. Korea Ind. Syst. Eng, Vol. 40, No. 4, pp. 183-190, Dec. 2017. DOI: https://doi.org/10.11627/jkise.2017.40.4.183
  13. Joong-Bae Lee, Dong-Hyun Baek, The Effect of Smartphone Purchasing Determinants on Repurchase Intention, J. Soc. Korea Ind. Syst. Eng, Vol. 40, No. 2, pp. 1-12, June 2017. DOI: https://doi.org/10.11627/jkise.2017.40.2.001
  14. Hee-Ohl Kim, Dong-Hyun Baek, A Study on Categorization of Accident Pattern for Organization's Information Security Strategy Establish, J. Soc. Korea Ind. Syst. Eng, Vol. 38, No. 4, pp. 193-201, Dec. 2015. DOI: http://dx.doi.org/10.11627/jkise.2015.38.4.193
  15. Hee-Ohl Kim, Dong-Hyun Baek, Prioritize Security Strategy based on Enterprise Type Classification Using Pair Comparison, J. Soc. Korea Ind. Syst. Eng, Vol. 39, No. 4, pp. 97-105, Dec. 2016. DOI: http://dx.doi.org/10.11627/jkise.2016.39.4.097
  16. Ji Hoon Kyung, ․Chong Su Kim, A Study on Measurements of IT Security Service Quality : Feasibility of Quantitative Measures, J. Soc. Korea Ind. Syst. Eng, Vol. 38, No. 4, pp. 30-38, Dec. 2015. DOI: http://dx.doi.org/10.11627/jkise.2015.38.4.30
  17. Tae-Hyun Ahn, Jae-Gyun Park, Young-Man Kwon, A Study on Performance of ML Algorithms and Feature Extraction to detect Malware, The Journal of The Institute of Internet, Broadcasting and Communication (IIBC), Vol. 18, No. 1, pp.211-216, Feb. 28, 2018. DOI: http://doi.org/10.7236/JIIBC.2018.18.1.211
  18. Seung-Jae Kim, Jung-Jae Lee, A Study on Face Recognition using Support Vector Machine, The Journal of The Institute of Internet, Broadcasting and Communication (IIBC), Vol. 16, No. 6, pp. 183-190, Dec. 2016. DOI: https://doi.org/10.7236/JIIBC.2016.16.6.183
  19. Min-soo Kang, Chunhwa Ihm, Jaeyeon Lee, Eun-Hye Choi, Sang Kwang Lee, A Study on Object Recognition for Safe Operation of Hospital Logistics Robot Based on IoT, The Journal of The Institute of Internet, Broadcasting and Communication (IIBC), Vol. 17, No. 2, pp. 141-146, Apr. 2017. DOI: https://doi.org/10.7236/JIIBC.2017.17.2.141