• Title/Summary/Keyword: Input/output Control

Search Result 2,504, Processing Time 0.034 seconds

The Design of a I/O Circuits for Driving and Monitoring of the Diesel Generator for Emergency (비상용 디젤 발전기 구동 및 모니터링을 위한 입출력 회로 설계)

  • Joo, Jae-Hun;Kim, Jin-Ae;Choi, Jung-Keyng
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.8
    • /
    • pp.1491-1496
    • /
    • 2009
  • This paper presents an digital based input/output interface circuit for controlling and monitoring the Diesel Engine Generator for emergency. In order to monitor and control of the Emergency Diesel Engine Generator, controlling and monitoring circuits need 5 analog input channels, 2 pick-up coil measuring circuits, 10 digital input channels containing Broken Wire Detect function, and 7 relay control signal output channels. This system performs signal processing of input signal taking advantage of simple filter circuit, photo-coupler and comparator circuit at analog input parts, and output signals for main relay is designed acting by double control, so it prevents malfunction completely. And it improves accuracy of speed input signal by applying digital circuit that processes rick-up coil signal.

Input-constrained Tracking Control of a Converter Model Using Invariant Sets (불변 집합을 이용한 컨버터의 입력 제약 추종 제어)

  • Kim, Jung-Su;Lee, Young Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.3
    • /
    • pp.177-182
    • /
    • 2013
  • This paper proposes an input-constrained reference tracking control of a converter model. To this end, first it is shown that the bilinear converter model can be equivalently represented by a linear uncertain model belonging to a polytopic set. Then, an input-constrained tracking control scheme for the linear uncertain model is designed based on recently proposed tracking control scheme. The control scheme yields not only a stabilizing control gain but also a feasible and invariant set for the converter model. Finally, simulation results show that the state trajectory always stays in the feasible and invariant set and that the output tracks the given reference while satisfying the input constraint.

Gain Scheduled State Feedback and Disturbance Feedforward Control for Systems with Bounded Control Input (제어입력 크기제한을 갖는 시스템에서 이득 스케쥴 상태되먹임-외란앞먹임 제어)

  • Kang, Min-Sig
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.915-920
    • /
    • 2007
  • A new optimal state feedback and disturbance feedforward control design in the sense of minimizing $L_{2}-gain$ from disturbance to control output is proposed for disturbance attenuation of systems with bounded control input and measurable disturbance. The controller is derived in the framework of linear matrix inequality(LMI) optimization. A gain scheduled state feedback and disturbance feedforward control design is also suggested to improve disturbance attenuation performance. The control gains are scheduled according to the proximity to the origin of the state of the plant and the magnitude of disturbance. This procedure yields a stable linear time varying control structure that allows higher gain and hence higher performance controller as the state and the disturbance move closer to the origin. The main results give sufficient conditions for the satisfaction of a parameter-dependent performance measure, without violating the bounded control input condition.

  • PDF

Gain Scheduled State Feedback and Disturbance Feedforward Control for Systems with Bounded Control Input - Theory (제어입력 크기제한을 갖는 시스템에서 이득 스케줄 상태되먹임-외란앞먹임 제어 - 이론)

  • Kang, Min-Sig
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.11
    • /
    • pp.59-65
    • /
    • 2007
  • A new optimal state feedback and disturbance feedforward control design in the sense of minimizing $L_2$-gain from disturbance to control output is proposed for disturbance attenuation of systems with bounded control input and measurable disturbance. The controller is derived in the framework of linear matrix inequality(LMI) optimization. A gain scheduled state feedback and disturbance feedforward control design is also suggested to improve disturbance attenuation performance. The control gains are scheduled according to the proximity to the origin of the state of the plant and the magnitude of disturbance. This procedure yields a stable linear time varying control structure that allows higher gain and hence higher performance controller as the state and the disturbance move closer to the origin. The main results give sufficient conditions for the satisfaction of a parameter-dependent performance measure, without violating the bounded control input condition.

A Study on the Controller Design of the Flight Control System Using MRAC Methods (MRAC 방식을 이용한 비행체 조종장치의 제어기 설계에 관한 연구)

  • Byung-Chul Kwak;Hai-Won Yang
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.3
    • /
    • pp.171-179
    • /
    • 1988
  • This paper deals with the controller design of the flight control system using the model reference adaptive control approach. The structure of the adaptive control system is based on the structure suggested by NARENDRA and VALAVANI. In particular, the problem is considered in case of the relative degree n=2 of plant. The flight control system is single-input single-output system, and the control input is given from the input-output data of the referencemodel and plant. For the analysis of the designed control system, thesimulation is perfarmed in cases of analog plant and analog plant with flight motion table, and reviewed.

Development of the Dynamometer Control System for Medium Speed Diesel Engines

  • Choi, Sang-Gu;Ryu, Sang-Hun;Kim, Jeom-Goo;Park, Ho-Chol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.243-247
    • /
    • 2004
  • The dynamometers which had made in a long time ago could not control the input/output quantity of water minutely and was sensitive to a noise since it was controlled by an analog control method. Therefore, a fully digital controlled system was urgently required to be robust against various noises. In this paper, the new system which can control the amount of circulated water in dynamometer was developed. This system is consisted of an industrial digital type controller and a servo motor. The industrial PLC was used as a main controller for the developed system, and the actuator and servo motor were used to control the inlet and outlet valve independently. The torque signal of load cell was fed back to the main controller to regulate the diesel engines load. Generally, an input/output valve position of the old dynamometer was fixed with a proper situation for an engine output test and the torque was changed according to the time interval. However, the torque value for the dynamometer could not be constantly kept because of the variation of the input water flow and fluid characteristic. Therefore, the automatic control of an inlet and outlet valve should be performed to keep the constant torque. So, the PID control method was applied to solve this problem. Also, the development of a web-based remote control system was described in this paper. This software will give us the convenience of operation, the more efficient operations, and the reduced operator workload for operation of the dynamometer. The application results of the system have been verified at actual diesel engine field.

  • PDF

Model reference sliding mode control for the system with input/ouput disturbance (입.출력 외란을 가지는 시스템에 대한 기준모델 슬라이딩 모드 제어)

  • 김우태;김가규;전해진;최봉열
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.387-387
    • /
    • 2000
  • In this paper, we present a model reference sliding mode control for the system with input/output disturbance. The proposed model reference sliding mode control makes always the error remain on the surface in finite time. Therefore the system is insensitive to external disturbance. Simulation results are included to illustrate the effectiveness of proposed scheme.

  • PDF

Control of an experimental magnetic levitation system using feedforward neural network controller (앞먹임 신경회로망 제어기를 이용한 자기부상 실험시스템의 제어)

  • 장태정;이재환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1557-1560
    • /
    • 1997
  • In this paper, we have built an experimental magnetic levitation system for a possible use of control education. We have give a mathermatical model of the nonlinear system and have shown the stability region of the linearized system when it is controlled by a PD controller. We also proposed a neural network control system which uses a neural network as a feedforward controller thgether with a conventional feedback PF controller. We have generated a desired output trajectory, which was designed for the benefit of the generalization of the neural network controller, and trained the desired output trajectory, which was desigend for the benefit of the generalization of the neural netowrk controller, and trained a neural network controller with the data of the actual input and the output of the system obtained by applying the desired output trajectroy. A good tracking performance was observed for both the desired trajectiories used and not used for the neural network training.

  • PDF

Controller Design of Buck-Boost Converter with Constant Voltage Output (정 전압 출력을 갖는 벅-부스트 컨버터의 제어기 설계)

  • Lee, Woo-Cheol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.9
    • /
    • pp.42-50
    • /
    • 2015
  • The Buck-Boost converter consisted of two switches is more expensive than the conventional Buck converter, because of the increase of the components. However, it can control the DC voltage depending on the requested load voltage without additional circuits, because it can control the voltage under the relatively wide range of the load. Additionally, it can control the output voltage constantly under the variation of the input voltage. In the paper two control loops consisted of current and voltage control are designed. When two controllers are operated at the same time the problem of the output voltage is occurred. Therefore, the solution of the output voltage problem is proposed. Finally, the validity of the proposed scheme is investigated with simulated and experimental results for a prototype system rated at 1kVA.

Three Phase Embedded Z-Source Inverter (3상 임베디드 Z-소스 인버터)

  • Oh, Seung-Yeol;Kim, Se-Jin;Jung, Young-Gook;Lim, Young-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.486-494
    • /
    • 2012
  • In this paper, we proposes the three-phase embedded Z-source inverter consisting of the three embedded Z-source converters and it's the output voltage control method. Each embedded Z-source converter can produce the bipolar output capacitor voltages according to duty ratio D such as single-phase PWM inverter. The output AC voltage of the proposed system is obtained as the difference in the output capacitor voltages of each converter, and the L-C output filter is not required. Because the output AC voltage can be stepped up and down, the boost DC converter in the conventional two-stage inverter is unnecessary. To confirm the validity of the proposed system, PSIM simulation and a DSP based experiment were performed under the condition of the input DC voltage 38V, load $100{\Omega}$, and switching frequency 30kHz. Each converter is connected by Y-connection for three-phase loads. In case that the output phase voltage is the same $38V_{peak}$ as the input DC voltage and is the 1.5 times($57V_{peak}$), the simulation and experimental results ; capacitor voltages, output phase voltages, output line voltages, inductor currents, and switch voltages were verified and discussed.