• Title/Summary/Keyword: Inorganic anion

Search Result 69, Processing Time 0.018 seconds

Analysis of selenoaminoacids and selenoproteins in blood serum of sows fed by selenium fortified feed (셀레늄강화 사료를 먹인 모돈 혈청에서의 셀레노아미노산 및 셀레노단백질 분석)

  • Park, Myungsoon;Lee, Sung Hoon;Pak, Yong-Nam
    • Analytical Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.196-203
    • /
    • 2015
  • Selenium species (inorganic selenium, selenoaminoacids, and selenoproteins) were analyzed using anion exchange and affinity chromatography, which were connected to ICP/MS for the blood serum of sows fed by seleniumfortified feed. The Anion Exchange PRP X-100 column was used for the analysis of inorganic selenium (Se4+ and Se6+) and selenoaminoacids. The HEP column was used to separate SelP from GPx+SeAlb in selenoproteins. A quantitative analysis was performed using the post-column isotope dilution technique. The lactating sows were divided into three groups and fed by selenium fortified feed (organic 0.3 mg/kg, 0.6 mg/kg and inorganic 0.6 mg/kg) for four weeks. The test groups showed increases in selenoaminoacids compared with the control group, except the inorganic feed group. There was no significant difference between the organic feed groups. All test groups showed increases in selenoproteins. In particular, SelP showed a large increase that was 1.5 times higher than the other proteins.

The Effect of Inorganic Electrolyte on the Electrokinetic Features of Calcium Carbonate Particles in Aqueous Environment (수중 탄산칼슘 입자의 전기적 거동에 미치는 무기염류의 영향)

  • O, Se-Jin;Choi, Eun-Jin;Kim, Dong-Su
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.1
    • /
    • pp.89-95
    • /
    • 2010
  • The electrokinetic potential of $CaCO_3$, which takes an important part in aquatic system, has been measured and the variation of total energy between $CaCO_3$ particles with the distance of particles was estimated based on DLVO theory. The electrokinetic potential of particles was observed to increase to positive direction as the charge valence of cations which was added to suspension was increased. Also, the total interaction energy between particles was estimated to be more negative as the charge valence of cation was higher and its concentrations was raised. When a mixture of cations with different charge valences was added, the influence of cation with a higher charge valence was more significant on the total interaction energy between particles. When anion was added to the suspension of $CaCO_3$, the total energy estimated by DLVO theory was examined to move to positive direction and the electrokinetic potential of particles became more negative. Likewise cations, the effect of anions on the electrokinetic potential of particles and total interaction energy between them was observed to be proportional to their charge valence and the influence of the mixture of anions with different charge valence became more remarkable as the mixing ratio of the anion with a higher charge valence was increased.

Synthesis, Characterization and Magnetic Properties of a Novel Disulfonate-pillared Copper Hydroxide Cu2(OH)3(DS4)1/2, DS4 = 1,4-Butanedisulfonate

  • Park, Seong-Hun;Lee, Cheol-Eui
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.10
    • /
    • pp.1587-1592
    • /
    • 2006
  • We report the preparation, structure and magnetic properties of a new pillared complex, copper(II) hydroxy-1,4-butanedisulfonate, $Cu_2(OH)_3(O_3SC_4H_8SO_3)_{1/2}$. The titled compound was obtained by anion exchange, using copper hydroxyl nitrate $(Cu_2(OH)_3NO_3)$ as the starting material. According to the XRD data, this compound exhibits a pillared layered structure with organic layers tilted between the copper hydroxide layers with a tilt angle of $21.8^{\circ}$. FTIR spectroscopy confirms total exchange of nitrate by the sulfonate and indicates that the sulfonate functions are linked to the copper(II) ions with each aliphatic chain bridging the adjacent hydroxide layers. According to the dc and ac magnetic measurements, the title compound is a metamagnet consisting of spin-canted antiferromagnetic layers, with a Neel temperature of 11.8 K.

Effect of Cadmium on Organic Acid Transport System in Renal Basolateral Membrane

  • Kim, Ghi-Chan;Kim, Kyoung-Ryong;Kim, Jee-Yeun;Park, Yang-Saeng
    • The Korean Journal of Physiology
    • /
    • v.30 no.2
    • /
    • pp.279-288
    • /
    • 1996
  • Chronic exposure to cadmium impairs various renal tubular functions, including organic acid (anion) secretion. To investigate the mechanism of cadmium-induced alterations in the organic anion transport system, kinetics of p-aminohippurate (PAH) uptake was studied in renal cortical basolateral membrane vesicles (BLMV) isolated from cadmium-intoxicated rats (adult male Sprague-Dawley). Cadmium intoxication was induced by subcutaneous injections of $CdCl_{2}$ (2 mg Cd/kg per day) for 3 weeks. The renal plasma membrane vesicles were prepared by Percoll gradient centrifugation. The vesicular uptake of $^{14}C$-PAH was determined by rapid filtration technique using Millipore filter. Cadmium intoxication resulted in a marked attenuation of $Na^{+}$-dependent, ${\alpha}$-ketoglutarate (${\alpha}$KG)-driven PAH uptake with no changes in $Na^{+}$ and ${\alpha}$KG-independent transport component. Kinetic analysis indicated that Vmax, but not Km, of the $Na^{+}$-dependent, ${\alpha}$KG-driven component was reduced. A similar reduction of $Na^{+}$-dependent, ${\alpha}$KG-driven PAH uptake was observed in normal membrane vesicles directly exposed to inorganic cadmium in vitro, and this was accompanied by an inhibition of both $Na^{+}$-dependent ${\alpha}$KG uptake and ${\alpha}$KG-PAH exchange activity. These results indicate that during chronic exposure to cadmium, free cadmium ions liberated in the proximal tubular cytoplasm directly interact with the basolateral membrane and impair the active transport capacity for organic anions, most likely due to an inhibition of both $Na^{+}$-dicarboxylate cotransporter and dicarboxylate-organic anion antiporter activities.

  • PDF

A Review on Membranes and Catalysts for Anion Exchange Membrane Water Electrolysis Single Cells

  • Cho, Min Kyung;Lim, Ahyoun;Lee, So Young;Kim, Hyoung-Juhn;Yoo, Sung Jong;Sung, Yung-Eun;Park, Hyun S.;Jang, Jong Hyun
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.183-196
    • /
    • 2017
  • The research efforts directed at advancing water electrolysis technology continue to intensify together with the increasing interest in hydrogen as an alternative source of energy to fossil fuels. Among the various water electrolysis systems reported to date, systems employing a solid polymer electrolyte membrane are known to display both improved safety and efficiency as a result of enhanced separation of products: hydrogen and oxygen. Conducting water electrolysis in an alkaline medium lowers the system cost by allowing non-platinum group metals to be used as catalysts for the complex multi-electron transfer reactions involved in water electrolysis, namely the hydrogen and oxygen evolution reactions (HER and OER, respectively). We briefly review the anion exchange membranes (AEMs) and electrocatalysts developed and applied thus far in alkaline AEM water electrolysis (AEMWE) devices. Testing the developed components in AEMWE cells is a key step in maximizing the device performance since cell performance depends strongly on the structure of the electrodes containing the HER and OER catalysts and the polymer membrane under specific cell operating conditions. In this review, we discuss the properties of reported AEMs that have been used to fabricate membrane-electrode assemblies for AEMWE cells, including membranes based on polysulfone, poly(2,6-dimethyl-p-phylene) oxide, polybenzimidazole, and inorganic composite materials. The activities and stabilities of tertiary metal oxides, metal carbon composites, and ultra-low Pt-loading electrodes toward OER and HER in AEMWE cells are also described.

Ion-Pair Chromatography of Organic and Inorganic Anions (유기 및 무기음이온에 대한 이온쌍크로마토그래피)

  • Sam Woo Kang
    • Journal of the Korean Chemical Society
    • /
    • v.29 no.4
    • /
    • pp.365-371
    • /
    • 1985
  • A cationic dye, methylene blue $(MTB^+)$ was examined as a counter ion in the separation of organic and inorganic anions by ion-pair chromatography. Nonabsorbing anions could be indirectly detected by photometric detector with the assistance of MTB^+ in visible range (665nm). A mixture of anions was able to be separated with good base line resolution and high sensitivity. The capacity factors were also determined in various experimental conditions to study retention mechanism. The retention followed the ion-interaction model where the $MTB^+$ occupies a primary layer at the stationary phase while the analyte anion and other anions in the system compete for forming the secondary layer.

  • PDF

Review : Ionic Liquids as Green Solvent (리뷰 : 녹색용매로서의 이온성액체 기술동향)

  • Lee, Junwung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.690-702
    • /
    • 2013
  • Ionic liquids(ILs) have been the most investigated chemicals among green solvents including water, glycerol, supercritical carbon dioxdie($scCO_2$). ILs are attracting organic as well as inorganic chemicals because most ionic liquids' vapor pressures are very low so that ILs are liquids phase at ambient conditions. ILs are composed of various anions and cations, thus chemists can design functionalized solvents and/or catalysts that can be used in specific synthetic reactions by means of combinations of different ions. Many scientists believe ILs being green materials because of its low vapor pressure as well as the flexibility in controlling the chemical and physical properties. In this review the author describes recent development of ILs focused on imidazolium and pyridinium ILs which are being most investigated presently. In order to apply this materials in industrial level, the toxicity matter must be resolved first. In this regard, the author describes recent research trend regarding environmental effects by ILs as well as some meaningful results as well.

Enhanced removal of phosphate on modified ion exchanger with competing ion (음이온 교환수지를 이용한 인제거 향상)

  • Nam, Ju-Hee;Lee, Sang-Hyup;Choi, Jae-Woo;Hong, Seok-Won;An, Byungryul
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.1
    • /
    • pp.121-128
    • /
    • 2013
  • The concern for dissolved phosphate in water/wastewater has been increasing because of the risk for eutrophication. A variety of conventional and advanced technologies were applied to meet the enforced new regulation of phosphate around the world. However, there still remained a lot of challenge because most introduced/developed method, for example, biological and physic-chemical treatment is not easy to satisfy the new regulation of phosphate in water. In order to meet the new regulation, the application of ion exchanger has been tried which showed that the removal efficiency for phosphate was strongly determined by in the presence of the competing ion, especially sulfate. As results, a new class of ion exchanger governed by ligand exchange was developed and investigated to increase the selectivity for phosphate. The current study using organic/inorganic anion exchanger developed with Lewis acid-base interaction confirms the selectivity for phosphate over sulfate. According to isotherm test and column test, the value of the maximum phosphate uptake (Q) showed 64 mg/g as $po{_4}^{3-}$ and the breakthrough for phosphate occurs after 1000 min and completely finishes at 2500 min, respectively.

Micelle Catalysis on the Reaction between Triphenylmethane Dyes and Cyanide Ion (Triphenylmethane Dye와 Cyanide Ion과의 반응에 대한 Micelle의 촉매작용)

  • Won Fae Koo
    • Journal of the Korean Chemical Society
    • /
    • v.17 no.6
    • /
    • pp.411-415
    • /
    • 1973
  • The reaction between cyanide ion and triphenyl methane dyes is subject to marked catalysis by cationic micelles of cetyltrimethyl ammonium bromide(CTABr) and retarded by anionic micelles of sodium lauryl sulfate(NaLS). Added salts, anions inhibit the catalysis by CTABr, and cations, especially $Zn^{++},\;Cd^{++}$ decrease the retardation of the reaction rates in the presence of NaLS. The kinetic effects of the ionic micelles are much larger in water than in ethanol-water, methanol-water, propanol-water and acetone-water, but strange solvent effects, acceleration the reaction rates, was found in the reaction with malachite green in water-methanol system.

  • PDF

The Behavior of Particulate-Bound logic Components and Their Relationships with Meteorological Parameters: Air-Sea Geochemistry of Inorganic and Organic tons in Cheiu Island (이온성분의 환경거동과 기상인자와의 관계: 제주지역을 중심으로 한 유.무기성 이온성분의 대기-해양지화학)

  • 김기현;이강웅
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.5
    • /
    • pp.479-490
    • /
    • 1998
  • The concentrations of ten inorganic (sodium, chloride, sulfate, ammonia, etc.) and three organic (acetate, formate, and MSA) ions associated with airborne particulate matter were measured from Cheju Island, Korea during the three field intensive campaigns conducted in (1) Sept./oct. 1997 (fall), (2) Dec. 1997 (winter), and (3) April 1998 (spring). The results of our measurements indicated that the concentration levels of most ionic species were decreasing significantly across the three experimental periods. The patterns of concentration reduction were clear as the sum of all cation and anion species changed dramatically across those periods such as 294> 144 > 65 and 193 >96>74 nequiv/m3, respectively. The changes were best explained in terms of the wind rose patterns of the study site. Since our sampling spot is located on the western-end point of Cheju Island, it is likely to reflect the effects of diverse sources such as natural, marine processes during NW and local non-maritime ones during SE winds. .Hence, the periodical changes in ionic concentrations may be accounted for by the comparable changes in wind direction. To further investigate environmental characteristics of these ionic components, correlation analysis was conducted not only between meteorological and ion data but between different ion-pairs. The results of these analyses confirm that the concentration levels of ionic species are strongly affected by wind speed and temperature and that there are certain patterns between ion species to which such effects apply. In light of the significance of the wind rose patterns in the area, we further extended these analyses into four data groups that were divided on the basis of wind direction. The results of these analyses showed that the strength of correlations between important pairs (e.g.:. between windspeed and most of major inorganic species including sodium and chloride) can be ranked on the distribution of major ions are very diverse, depending on data grouping scheme for such analysis. The results of this study thus suggest that environmental behavior of chemical components be analyzed in various respects, rather than simple standard, especially if measurements are made in complex environmental condition under which both natural and anthropogenic effects are competing each other.

  • PDF