• Title/Summary/Keyword: Inorganic accumulation

Search Result 120, Processing Time 0.029 seconds

Growth and Contents of Inorganic Nutrient during Cultivation of Zoysiagrass (한국잔디의 재배기간 중 생육과 무기성분 함량 변화)

  • Bae, Eun-Ji;Lee, Kwang-Soo;Park, Yong-Bae;Lee, Sang-Myeong;Yang, Geun-Mo;Huh, Moo-Ryong
    • Weed & Turfgrass Science
    • /
    • v.2 no.1
    • /
    • pp.82-87
    • /
    • 2013
  • This research will be utilized as a base line data by researching on growth and the accumulation of inorganic nutrients during the cultivation period of zoysiagrass and also to establish a cultivation strategy of zoysiagrass. It involves the management such as fertilizer and mowing which ultimately led to the difference of growth and accumulation of inorganic nutrients. The accumulation of inorganic nutrients after mowing, the amount of accumulation was small when compared to the amount lost for the shoot, rhizome and root. Difference in the accumulation of inorganic nutrients, but as for K, Ca and Mg accumulation it shows similar aspects to N accumulation. The orders of inorganic nutrients in zoysiagrass were N > K > P > Ca > Mg. The characteristics of inorganic nutrients absorption of such zoysiagrass acts as the foundation of cultivation, and in the aspect of making decisions on the fertilization amount and soil management, it is closely related to the requirement on nutrients. In order to increase the productivity based on the zoysiagrass's growth and density rate improvement, accumulation of inorganic nutrients per growth period needs to be analyzed, and supplying nutrients in an efficient method suitable to the growth period is advisable, so such basic research was necessary.

Accumulation of inorganic arsenic, and growth rate by changing of phosphate concentration in Hizikia fusiforme (인산염 농도 변화에 따른 톳(Hizikia fusiforme)의 무기비소(As (V)) 축적 및 생장률 변동)

  • Hwang, Un-Ki;Choi, Hoon;Choi, Min-Kyu;Kim, Min-Seob;Choi, Jong-Woo;Heo, Seung;Lee, Ju-Wook
    • Korean Journal of Environmental Biology
    • /
    • v.37 no.2
    • /
    • pp.189-195
    • /
    • 2019
  • In this study, we performed an analysis of the accumulation of inorganic arsenic and growth rate with changes in phosphate concentration in Hizikia fusiforme. When exposed to inorganic arsenic for fourteen days, we found that the collection of inorganic arsenic hardly increased at high phosphate concentrations (2 mg L-1). However, when the phosphate concentration was low (0.02 mg L-1), accumulation of inorganic arsenic increased. Additionally, H. fusiforme decreased in a growth rate of 14.5% in low phosphate concentration (0.02 mg L-1) and fell in a growth rate of 30% when exposed to inorganic arsenic (10 ㎍ L-1). H. fusiforme cannot distinguish between phosphate and inorganic arsenic. Thus, when phosphate concentration was lower, the inorganic arsenic accumulation increased, and accumulated inorganic arsenic inhibited photosynthesis and cell division, reducing the growth rate. H. fusiforme is known to have higher inorganic arsenic accumulation than other seaweeds. Therefore, various studies are needed to secure the food safety of H. fusiforme which is an essential aquaculture species in Korea.

Characteristics of Absorption and Accumulation of Inorganic Germanium in Panax ginseng C. A. Meyer

  • Kang, Je-Yong;Park, Chan-Soo;Ko, Sung-Ryong;In, Kyo;Park, Chol-Soo;Lee, Dong-Yun;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.35 no.1
    • /
    • pp.12-20
    • /
    • 2011
  • The characteristics of absorption and accumulation of inorganic germanium in Panax ginseng C. A. Meyer were examined. In 4-year-old P. ginseng, the germanium content of the field soil increased with increased amounts and frequencies of inorganic germanium application, while chemical components of the soil, such as available phosphate and exchangeable calcium, potassium, and magnesium, decreased with the increased inorganic germanium application. In the 4-year-old P. ginseng, the germanium content was highest in the rhizome and increased in the order of stem, leaf, lateral root, and main root, suggesting that inorganic germanium was absorbed from the root and translocated to the stem and leaf via the rhizome. As for changes in ginsenosides in 4-year-old P. ginseng rhizomes, the contents of ginsenosides $Rb_1$, $Rb_2$, Re, and Rf decreased as the germanium content in soil increased. Ginsenosides $Rb_1$, $Rb_2$, Rc, Re, and Rf in the main root also decreased with increasing germanium content in the main root. The results suggest that inorganic germanium treatment may increase organic germanium in harvested P. ginseng, thus enhancing the medicinal effi cacy of ginseng products.

Nephroprotective effect of astaxanthin against trivalent inorganic arsenic-induced renal injury in wistar rats

  • Wang, Xiaona;Zhao, Haiyuan;Shao, Yilan;Wang, Pei;Wei, Yanru;Zhang, Weiqian;Jiang, Jing;Chen, Yan;Zhang, Zhigang
    • Nutrition Research and Practice
    • /
    • v.8 no.1
    • /
    • pp.46-53
    • /
    • 2014
  • Inorganic arsenic (iAs) is a toxic metalloid found ubiquitously in the environment. In humans, exposure to iAs can result in toxicity and cause toxicological manifestations. Arsenic trioxide ($As_2O_3$) has been used in the treatment for acute promyelocytic leukemia. The kidney is the critical target organ of trivalent inorganic As ($iAs^{III}$) toxicity. We examine if oral administration of astaxanthin (AST) has protective effects on nephrotoxicity and oxidative stress induced by $As_2O_3$ exposure (via intraperitoneal injection) in rats. Markers of renal function, histopathological changes, $Na^+-K^+$ ATPase, sulfydryl, oxidative stress, and As accumulation in kidneys were evaluated as indicators of $As_2O_3$ exposure. AST showed a significant protective effect against $As_2O_3$-induced nephrotoxicity. These results suggest that the mechanisms of action, by which AST reduces nephrotoxicity, may include antioxidant protection against oxidative injury and reduction of As accumulation. These findings might be of therapeutic benefit in humans or animals suffering from exposure to $iAs^{III}$ from natural sources or cancer therapy.

Chemical Properties of Artificially Buried Wood in an Intertidal Zone during the Deterioration Period

  • SEO, Sujin;KIM, Taekjoon;LEE, Jae-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.6
    • /
    • pp.896-906
    • /
    • 2020
  • Wood deterioration experiments were carried out for 6 months in an intertidal zone of South Korea to monitor the changes in the chemical properties of two types of species, Korean red pine and sawtooth oak. The results of FT-IR spectra and XRD patterns have shown that the chemical properties of the wood did not change significantly during the 6-month burial period. However, the brightness of the surface decreased after burial; the value of the sawtooth oak sample was lower than that of the Korean red pine sample owing to an accumulation of inorganic compounds in cell lumen as observed by ICP analysis. Among the inorganic compounds, sodium and sulfur concentrations increased significantly over the burial period compared with the control. Further, the maximum moisture content decreased from 199% to 136% in the Korean red pine and 62% to 60% for the sawtooth oak. Nevertheless, the major chemical composition of both the wood species did not change significantly during the 6-month burial period, whereas, the crystallinity decreased with an increasing burial period owing to an accumulation of inorganic compounds in the lumen.

Estimation of Nutrients Transport in Kamak Bay using the Eco-hydrodynamic Model (생태계모델을 이용한 가막만의 영양염 거동 특성 평가)

  • 김동명
    • Journal of Environmental Science International
    • /
    • v.12 no.7
    • /
    • pp.745-751
    • /
    • 2003
  • The three-dimensional eco-hydrodynamic model was applied to estimate the physical process in terms of nutrients and net uptake(or regeneration) rate of nutrients in Kamak Bay for scenario analysis to find proper management plan. The estimation results of the physical process in terms of nutrients shelved that transportation of nutrients is dominant in surface level while accumulation of nutrients is dominant in bottom level. In the case of dissolved inorganic nitrogen, the results showed that the net uptake rate was 0∼60 mg/㎡/day in surface level(0∼3m), and the net regeneration rate was 0.0∼10.0 mg/㎡/day in middle level(3∼6m) and above 10mg/㎡/day in bottom level(6m∼below). In the case of dissolved inorganic phosphorus, the net uptake rate was 0.0∼3.0 mg/㎡/day in surface level, and the net regeneration rate was 0.5∼1.5 mg/㎡/day in middle level and 1.0∼3.0 mg/㎡/day in bottom level. These results indicates that net uptake and transport of nutrients are occurred predominantly at the surface level and the net generation and accumulation are dominant at bottom level. Therefore, it is important to consider the re-supplement of nutrients due to regeneration of bottom water.

A Study on the Accumulation Phenomena of Oxidized Starch in White Water in Closed Fine Papermaking Process (Part 1) -Effect of Papermaking system closure- (백상지 공정 폐쇄화에 따른 백수 내 산화전분의 축적 현상에 관한 연구 (제1보) -공정 폐쇄화의 영향-)

  • Ahn, Hyun-Kyun;Lee, Hak-Lae
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.36 no.3
    • /
    • pp.15-34
    • /
    • 2004
  • Diverse benefits such as reduction of fresh water consumption and effluent discharge, efficient use of raw materials and energy savings can be obtained by papermaking system closure. Closure of papermaking processes, however, causes many problems including reduction of the efficiency of additives, decrease of retention and dewatering, felt plugging, poor Paper quality, generation of slime and odor, poor vacuum efficiency, etc, and it has been recognized that accumulation of Inorganic and organic substances in the process white water is the prime cause of these problems. Therefore, technological developments for preventing accumulation of these detrimental substances are urgently required for Implementing papermaking system closure. Understanding of the accumulation phenomena of the inorganic and organic substances in the papermaking process white water is prerequisite for papermaking system closure. In this study a process simulation method was used to analyze the accumulation phenomena of anionic starch In the process white water as the closure level of a fine paper making process is increased. A pilot paper machine was used as a model process. Starch adsorption and desorption models were developed based on the concept of starch adsorption ratio, which was not considered in previous studies. Steady state simulation studies were carried out based on this model using a commercial simulator. In steady state simulation, the variation of dissolved starch concentration in each process unit was monitored as a function of white water usage for wire shower. The result of the steady state simulation showed that dissolved starch concentration and its increase ratio in Process units increased as white water usage ratio for wire shower increased.

High-rate Anaerobic Treatment of Landfill Leachate (매립지 침출수 처리의 고율 혐기성 처리)

  • Lee, Chae-Young;Shin, Hang-Sik
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.15 no.2
    • /
    • pp.136-146
    • /
    • 2007
  • Landfill leachate was successfully treated in upflow anaerobic sludge blanket (UASB) reactors regardless of the addition of granular sludge. Initial operating period was significantly reduced by the addition of granular sludge. At hydraulic retention time (HRT) of one day, chemical oxygen demand (COD) removal rates in Control and Granule reactor were maintained over 90%, respectively with organic loading rate (OLR) of $4-8kgCOD/m^3.d$. During the experiment, the inorganic precipitates were accumulated in and around the sludge, and in the wall of the reactors were formed in both reactors regardless of addition of granular sludge. Specific methanogenic activity (SMA) increased as adaptation of microorganism to the substrate and OLR were increased. The maximum SMA value of the sludge for Granule reactor was about $0.57gCOD/g{\cdot}VSS{\cdot}.d$. The SMA value was not decreased because of excessive inorganic accumulation, however, it was needed to have pre-treatment process of influent to remove the inorganic metals.

  • PDF

Inhibitory Effect of Fermented Spanish Extract on Inorganic phosphate-induced Vascular Calcification in ex vivo Aortic Rings (발효 시금치 추출물의 무기인산염에 의해 유도된 혈관 석회화 저해 효과)

  • Lee, Sang Hee;Hong, Sun Mi;Sung, Mi Jeong
    • Journal of the Korean Society of Food Culture
    • /
    • v.37 no.3
    • /
    • pp.248-255
    • /
    • 2022
  • Spinach (Spinacia oleracea L.), a green leafy vegetable, is well known as a functional food due to its biological activities. Vascular calcification is associated with several disease conditions including atherosclerosis, diabetes, and chronic kidney disease (CKD), and is known to raise the risk of cardiovascular diseases related morbidity and mortality. However, there are no previous studies that have investigated the effects of fermented spinach exract (FSE) against aortic and its underlying mechanisms. Therefore, this study investigated the effects and action of possible mechanisms of FSE on inorganic phosphate (PI)-induced vascular calcification in ex vivo mouse aortic rings. PI increased vascular calcification through calcium deposition in ex vivo aortic rings. FSE inhibited calcium accumulation and osteogenic key marker, runt-related transcription factor 2 (Runx2), and bone Morphogenetic Protein 2 (BMP-2) protein expression in ex vivo aortic rings. And, FSE inhibited PI-induced extracellular signal-regulated kinase (ERK) and p38 phosphorylation in ex vivo aortic rings. These results show that FSE can prevent vascular calcification which may be a crucial way for the prevention and treatment of vascular disease association with vascular calcification.

Effect of Chemical Properties of Cultivation Soils on the Plant Growth and the Quality of Garlic (재배지 토양의 화학성이 마늘의 생육 및 품질에 미치는 영향)

  • Kim, Chang-Bae;Kim, Chan-Yong;Park, Man;Lee, Dong-Hoon;Choi, Jyung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.5
    • /
    • pp.333-339
    • /
    • 2000
  • Effects of chemical properties of cultivation soils on the growth and quality of garlics were investigated. Garlics were cultivated in Uisung and Yechun, one of the major areas of garlic production, where upland and paddy fields have been used for garlic production for many years. Contents of phosphate, sulfur and potassium in the soils of paddy fields were relatively higher than those in the soils of upland fields, suggesting that the accumulation of inorganic salts has been progressed in the paddy fields. Soils of Uisung area showed higher pH s and lower contents of available phosphate compared to those of Yechon area. This result implies that the soils of Uisung area provide somewhat better chemical properties for garlic growth than those of Yechun area. Contents of inorganic salts such as phosphate, potassium and magnesium in the soils significantly affected the growth and quality of garlics. Garlics grown in the soils with lower contents of these inorganic salts exhibited better growth status and contained more pyruvate. More pyruvate was found in the garlics grown in upland fields than in paddy fields. Therefore, it is apparent that the accumulation of inorganic salts, especially available phosphate, in cultivation soils leads to the inhibition of garlic growth and in turn to the deterioration of garlic quality.

  • PDF