• Title/Summary/Keyword: Innovative Construction Method

Search Result 109, Processing Time 0.028 seconds

Form Generation of Cable-Stayed Structures considering Structural Art - by using Graphic Statics - (구조미를 고려한 사장케이블 구조의 형태설계 - 정력학적 도해법 이용 -)

  • Kim, Namhee;Hong, Sung-Gul
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.4
    • /
    • pp.167-174
    • /
    • 2019
  • Cable-stayed structures provide a lot of possibilities toward the development of innovative structural forms regarding their expressiveness and uniqueness. Such cable-stayed structures, as form-active structures, can obtain a family of alternatives by changing parameters for defining geometric shapes. The concept of graphic statics is utilized to explain the relationship between the load path and structural forms because the load path of cable structures has something to do with their structural geometry. Moreover, this structural geometry has a dominant effect on both structural efficiency and structural elegancy. The proposed design method in this study will help designers conceive innovative structural forms considering structural safety, material efficiency, and structural art altogether.

An Analysis of Operation and Considerations for the Introduction of Performance Warranty Contracting (해외 성능계약제도의 운영현황 및 국내 도입시 고려사항 제시)

  • Cho, Su-Kyung;Seo, Yong-Chil;Lee, Sang-Beom
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2007.11a
    • /
    • pp.446-449
    • /
    • 2007
  • For the restoration of construction industry, the government have offered the policy since the end of 1990. It has offered to develop the world-class technology and establish the effective production structure. In the government policy, the delivery and contracting method has improved so that construction industry could be recognized. Foreign countries have conducted the R&D and application of Innovative Contracting for improvement of facilities, reduction of LCC and innovation of contractor. Among the Innovative Contracting, 'Performance Warranty Contracting' is defined that A guarantee of the integrity of a product and of the makers responsibility for the replacement or repair of deficiencies. Performance Warranty Contracting is used for technology developments of contractor, improvement of quality, reduction of LCC, prevention of early deficiencies and reduction of owner's inspection works. This paper analyzes concept and effects of Performance Warranty Contracting and presents considerations according to the introduction.

  • PDF

Analytical Study on I-beam of I-beam Grated Concrete slab (I 형강 격자 상판의 주부재 I형강에 대한 해석적 연구)

  • 박창규;김용곤;정영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.437-442
    • /
    • 2001
  • Recently, there have been increased much concerns about repair and rehabilitation works for aged concrete structures. In particular, it is known that due to repeated overburden vehicle there are significantly increasing number of aged concrete bridge slabs, which are strongly needed to construct and rehabilitate by innovative construction method. The objective of this research is to develop the new construction method of concrete slab in bridge structure, which can contribute to minimize the traffic congestion during the repair and rehabilitation works of aged concrete slab, and can also sufficiently assure the quality through the minimization of in-situ works at the site. I-beams with punch holes, which are substituted instead of main reinforcing steels in concrete slabs, will be manufactured in accordance with the specification in the factory. and will be preassembled into the Panel. After erecting the preassembled panels in the site, concrete will be poured into the slab panel. This research is to investigate physical properties of I-Beam with punch holes itself through static and fatigue test with rational numerical analysis Finally this research is to suggest reformed I-beam through the numerical analysis.

  • PDF

Experimental Comparison for Static Performance of I-beam Concrete Slab (I-형강 합성바닥판의 정적 성능비교)

  • 박길용;박창규;정영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.947-952
    • /
    • 2002
  • Recently, there have been increased much concerns about repair and rehabilitation works for aged concrete structures. In particular, it is known that due to repeated overburden vehicle there are significantly increasing number of aged concrete bridge slabs, which are strongly needed to construct and rehabilitate by innovative construction method. The objective of this research is to develop the new construction method of concrete slab in bridge structure, which can contribute to minimize the traffic congestion during the repair and rehabilitation works of aged concrete slab, and can also sufficiently assure the quality through the minimization of in-situ works at the site. I-beams with punch holes, which are substituted instead of main reinforcing steels in concrete slabs, will be manufactured in accordance with the specification in the factory, and will be preassembled into the panel. After erecting the preassembled panels in the site, concrete will be poured into the slab panel. This research is to investigate physical properties of I-Beam concrete slab through static test.

  • PDF

Measuring Performance to Engage the Extended Project Team in Construction

  • Bal, Menoka;Bryde, David
    • Journal of Construction Engineering and Project Management
    • /
    • v.5 no.1
    • /
    • pp.1-10
    • /
    • 2015
  • In construction, stakeholders of extended project team play a key role in the overall project performance. Successful integration of stakeholders demands for good management practices at strategic, operational and project levels. Targets and measures to improve the stakeholder performance encourage the creativity and willingness of stakeholders of extended project team to develop the better ways to achieve the project objectives. This paper presents a generic descriptive method, showing how stakeholder's ability and influence impacts on project performance in the construction sector. The findings of a series of interviews with key informants are presented and the following main conclusion is drawn: improving project performance through stakeholder's contribution and measuring their performance can strengthen the project performance. This innovative approach which redefines the process of improving the project performance in construction projects will be of interest to those who intend to manage the projects in practice as well as to those who interested in advancing theory.

Experimental Fatigue Performance of Concrete Slab with I-shaped Steel (I 형강 격자 상판의 피로 성능에 관한 실험적 연구)

  • 박창규;김용곤;김철환;이재형;정영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.541-546
    • /
    • 2000
  • Recently, there have been increased mush concerns about repair and rehabilitation works for aged concrete structures to keep up with rapid economic growth in Korea since the early 1970's. In particular, it is believed in these days that there are significantly increasing number of aged concrete bridge slabs, which are strongly needed to construct and rehabilitate by innovative construction method. The objective of this research is to develop the new construction method of concrete slab in bridge structure, which can contribute to minimize the traffic congestion during the repair and rehabilitation works of aged concrete slab, and can also sufficiently assure the quality through the minimization of in-situ works at the site. I-beams with punch holes, which are substituted instead of main reinforcing steels in concrete slabs, will be manufactured in accordance with the specification in the factory, and will be preassembled into the panel. After erecting the preassembled panels in the site, concrete will be poured into the slab panel. This test is to investigate physical properties of I-Beam with punch holes itself, and then to investigate structural properties of assembled I-Beam panels through static and fatigue test, of which can be utilized for the development of new construction method of concrete slab in bridge structure.

  • PDF

Critical Success Factors of Large Design-Build Projects in Vietnam

  • Dang, Chau Ngoc;Le-Hoai, Long;Lee, Young-Dai
    • Journal of Construction Engineering and Project Management
    • /
    • v.2 no.3
    • /
    • pp.30-39
    • /
    • 2012
  • Design-build (D&B) has been broadly perceived as an effective project delivery method and become popular in the world. However, the implementation process of this innovative procurement method in Vietnam encounters difficulties due mainly to unfamiliarity and inexperience with the approach. Critical success factors (CSFs) which could be used to enhance the project execution are useful to practitioners in Vietnam if identified. A questionnaire survey was employed to identify CSFs of D&B projects in Vietnam. Parties' competence, especially financial capability, and contract documentation are the most important factors significantly affecting project success. It was also shown that the perspectives of two principal parties in D&B projects on the CSFs are statistically correlated. The identified CSFs were then validated with some various D&B projects. The execution results of CSFs' were compared with the projects' performance measured try key performance indicators (KPIs). The most important success factors of this study were also compared with other countries'. The validation and comparison results provide project participants with some useful information to perform D&B projects better. Practitioners should well perform the identified CSFs to enhance the chance of the success of D&B projects in Vietnam. The findings of this study are useful not only to Vietnamese practitioners but also to others who are concerned about D&B method and plan to employ it in Vietnam in future.

A Web-Based Domain Ontology Construction Modelling and Application in the Wetland Domain

  • Xing, Jun;Han, Min
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.6
    • /
    • pp.754-759
    • /
    • 2007
  • Methodology of ontology building based on Web resources will not only reduce significantly the ontology construction period, but also enhance the quality of the ontology. Remarkable progress has been achieved in this regard, but they encounter similar difficulties, such as the Web data extraction and knowledge acquisition. This paper researches on the characteristics of ontology construction data, including dynamics, largeness, variation and openness and other features, and the fundamental issue of ontology construction - formalized representation method. Then, the key technologies used in and the difficulties with ontology construction are summarized. A software Model-OntoMaker (Ontology Maker) is designed. The model is innovative in two regards: (1) the improvement of generality: the meta learning machine will dynamically pick appropriate ontology learning methodologies for data of different domains, thus optimizing the results; (2) the merged processing of (semi-) structural and non-structural data. In addition, as known to all wetland researchers, information sharing is vital to wetland exploitation and protection, while wetland ontology construction is the basic task for information sharing. OntoMaker constructs the wetland ontologies, and the model in this work can also be referred to other environmental domains.

  • PDF

Stability study on tenon-connected SHS and CFST columns in modular construction

  • Chen, Yisu;Hou, Chao;Peng, Jiahao
    • Steel and Composite Structures
    • /
    • v.30 no.2
    • /
    • pp.185-199
    • /
    • 2019
  • Modular construction is an emerging technology to accommodate the increasing restrictions in terms of construction period, energy efficiency and environmental impacts, since each structural module is prefabricated offsite beforehand and assembled onsite using industrialized techniques. However, some innate structural drawbacks of this innovative method are also distinct, such as connection tying inaccessibility, column instability and system robustness. This study aims to explore the theoretical and numerical stability analysis of a tenon-connected square hollow section (SHS) steel column to address the tying and stability issue in modular construction. Due to the excellent performance of composite structures in fire resistance and buckling prevention, concrete-filled steel tube (CFST) columns are also taken into account in the analysis to evaluate the feasibility of adopting composite sections in modular buildings. Characteristic equations with three variables, i.e., the length ratio, the bending stiffness ratio and the rotational stiffness ratio, are generated from the fourth-order governing differential equations. The rotational stiffness ratio is recognized as the most significant factor, with interval analysis conducted for its mechanical significance and domain. Numerical analysis using ABAQUS is conducted for validation of characteristic equations. Recommendations and instructions in predicting the buckling performance of both SHS and CFST columns are then proposed.

Analysis of stress dispersion in bamboo reinforced wall panels under earthquake loading using finite element analysis

  • Kumar, Gulshan;Ashish, Deepankar K.
    • Computers and Concrete
    • /
    • v.21 no.4
    • /
    • pp.451-461
    • /
    • 2018
  • Present study is mainly concerned about the idea of innovative utilization of bamboo in modern construction. Owing to its compatible mechanical properties, a beneficial effect of its use in reinforced concrete (RC) frame infills has been observed. In this investigation, finite element analyses have been performed to examine the failure pattern and stress distribution pattern through the infills of a moment resisting RC frame. To validate the pragmatic use of bamboo reinforced components as infills, earthquake loading corresponding to Nepal earthquake had been considered. The analysis have revealed that introduction of bamboo in RC frames imparts more flexibility to the structure and hence may causes a ductile failure during high magnitude earthquakes like in Nepal. A more uniform stress distribution throughout the bamboo reinforced wall panels validates the practical feasibility of using bamboo reinforced concrete wall panels as a replacement of conventional brick masonry wall panels. A more detailed analysis of the results have shown the fact that stress concentration was more on the frame components in case of frame with brick masonry, contrary to the frame with bamboo reinforced concrete wall panels, in which, major stress dispersion was through wall panels leaving frame components subjected to smaller stresses. Thus an effective contribution of bamboo in dissipation of stresses generated during devastating seismic activity have been shown by these results which can be used to concrete the feasibility of using bamboo in modern construction.