• 제목/요약/키워드: Inner Tube Diameter

검색결과 262건 처리시간 0.028초

Axial compression behavior of double-skinned composite tubular columns under pure compression on concrete cores

  • Lee, Jeonghwa;Byun, Namju;Kang, Young Jong;Won, Deok Hee;Kim, Seungjun
    • Steel and Composite Structures
    • /
    • 제43권4호
    • /
    • pp.431-445
    • /
    • 2022
  • A double-skinned composite tubular (DSCT) column, which is an internally confined concrete-filled tubular column with a hollow section, has been developed for efficient use of materials that reduce self-weight and enhance seismic performance. It exhibits excellent material behavior with ductility owing to the confinement induced by outer and inner steel tubes. This study conducted axial compression tests considering the effects of steel tube thickness and hollow diameter ratios of DSCT columns on the material behavior of confined concrete under pure axial compression on concrete cores. From the axial compression tests, various combinations of outer and inner tube thicknesses and two different hollow section ratios were considered. Additionally, confined concrete material behavior, axial strength, failure modes, and ductility of DSCT columns were evaluated. Based on this study, it was concluded that the tests show a good correlation with peak strength and shapes of nonlinear stress-strain curves presented in literature; however, the thinner outer and inner steel tubes may reduce the ductility of DSCT columns when using thinner outer and inner tubes and higher confined stress levels. Finally, the minimum thickness requirements of the steel tubes for DSCT columns were discussed in terms of strength and ductility of test specimens.

Characteristics of R-22 and R-134a Two-Phase Flow Vaporization in Horizontal Small Tubes

  • Choi, Kwang-Il;Pamitran, A.S.;Rifaldi, M.;Mun, Je-Cheol;Oh, Jong-Taek
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.1528-1535
    • /
    • 2009
  • Characteristics of R-22 and R-134a two-phase vaporization in horizontal small tubes were investigated experimentally. In order to obtain the local heat transfer coefficients, the test was ran under heat flux range of 10 to $40\;kW/m^2$, mass flux range of 200 to $600\;kg/m^2s$, saturation temperature range of 5 to $10^{\circ}C$, and quality up to 1.0. The test section, which was made of stainless steel tube and heated uniformly by applying an electric current to the tube directly, have inner tube diameters of 0.5, 1.5 and 3.0 mm, and lengths of 0.33 and 2.0 m. The effects on heat transfer coefficient of mass flux, heat flux and inner tube diameter were presented. The experimental heat transfer coefficients were compared with the predictions using existing heat transfer coefficient correlations. A new boiling heat transfer coefficient correlation based on the superposition model, with considering the laminar flow, was developed.

  • PDF

세관 내 R-22 의 증발 전열 특성에 관한 연구 (Evaporating heat transfer characteristics of R-22 in small diameter tubes)

  • 최영석
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2000년도 춘계학술대회 논문집(Proceeding of the KOSME 2000 Spring Annual Meeting)
    • /
    • pp.134-139
    • /
    • 2000
  • Evaporating heat transfer characteristics of R-22 were measured inside smooth horizontal copper tubes with inner diameters of 3.36 mm and 5.35 mm respectively. The experiments were conducted in the closed loop which was driven by a magnetic gear pump. Experiments were performed for the following range of variables ; mass velocity of refrigerants (200 to 400 $kg/m^2$ .s) saturation temperature ($0^{\circ}C, \; 5^{\circC$}) and quality (0 to 1.0) The main results obtained are as follows : Evaporating heat transfer coefficients in the small diameter tubes (ID<7 mm) were observed to be strongly affected by a variety of diameters and to differ from those in the large diameter tubes. The heat transfer coefficients of the small diameter tubes are higher than those of the large diameter tubes. Comparing the heat transfer coefficients between experimental results and some well-known previous predictions (Shah's correlation Gungor-Winterton's and Kandlikar's correlation) it was very difficult to apply those to small diameter tubes.

  • PDF

세관내 R-22, R-134a의 증발 전열 특성에 관한 연구 (Evaporation Heat Transfer Characteristics of R-22, R-134a in Small Diameter Tubes)

  • 홍진우;박승준;오종택;오후규
    • 설비공학논문집
    • /
    • 제12권12호
    • /
    • pp.1081-1089
    • /
    • 2000
  • Evaporating heat transfer coefficients of R-22 and R-134a were measured in smooth horizontal copper tubes with inner diameters of 1.77, 3.36 and 5.35mm, respectively. The experiments were conducted in a closed loop, which was driven by a magnetic gear pump. Experiments were performed for the following range of variables: mass velocity (200 to 400 kg/$m^2$.s), saturation temperature($0^{circ}C,; 5^{\circ}C$) and quality(0 to 1.0). Main results obtained are as follows: evaporating heat transfer coefficients in the small diameter tubes (ID<7mm) were observed to be strongly affected by various diameters and to differ from those in the large diameter tubers. The heat transfer coefficients of the small diameter tubes were higher than those of the large diameter tubs. And it was very difficult to apply some well-known previous predictions (Shah`s, Gungor-Winterton`s and Kandlikar`s correlation) to small diameter tubes.

  • PDF

상계해법과 유한요소법을 이용한 스피닝공정 해석에 관한 연구 (A Study on the Process of Tube End Spining by the Upper bound Method and Finite Element Method)

  • 김진형;홍성인;이영선
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1996년도 춘계학술대회논문집
    • /
    • pp.23-30
    • /
    • 1996
  • The purpose of this study was to investigate changes in thewall thickness of tube sinking and working forces by the upper bound method and ABAQUS code. The independent variables were : Workpiece material, original wall thickness of tube, die angle, friction, and diameter reduction. The results indicated that of these five variables were a factor in wall-thickness increase and working forces. Three variables, a inner tube wall angle and two angles of the velocity discontinuous surfaces, are optimized in this proposed velocity field by the upper bound method. In this method, we can estimate the working forces and final tube thicknesses whcih are similar to acturla forming process. Optimized process variables which are obtained by upper bound method are used in ABAQUS pre-model . In ABAQUS analysis, the stress and the strain contours which are considered to be heat generation occured by the friction during forming process are observed.

  • PDF

On the Development of a Video Endoscope Having a Swallowable Insertion Tube

  • Wooshik Kim;Woo
    • 대한의용생체공학회:의공학회지
    • /
    • 제14권3호
    • /
    • pp.243-250
    • /
    • 1993
  • An endoscope is a medical device which observes the inner surface of an organ inside a body. Recently, a new type of endoscope using a CCD image sensor has been developed and turned out to have many strong points over the conventional optical fiber endoscope system. A swallowable insertion tube is an insertion tube having so small a diameter that the head of the insertion tube can reach the end of stomach only by mechanical movement of the esphagus and stomach or the patient's external movement. This paper presents some of the results that the Institute of Biomedical Engineering at Seoul National University has obtained while developing an electronic endoscope having a swallowable insertion tube. After some of the features of the developed system are presented, some of the image processing techniaues are addressed.

  • PDF

단속가열식 액체용 극소질량유량 계측기에 관한 수치해석적 연구 (Numerical Study on the Pulse Heating Type Infinitesimal Liquid Mass Flow Meter)

  • 김택영
    • 대한기계학회논문집B
    • /
    • 제39권2호
    • /
    • pp.119-124
    • /
    • 2015
  • 반도체 생산에 사용되는 액체용 극소 질량유량계측기의 새로운 설계 안에 대하여 수치해석적으로 연구하였다. 내경 0.3mm 정도인 원관 외부에 히터선을 일정 폭 권선하고, 히터로부터 일정거리 떨어진 후류에 온도계측용 써미스터선을 권선하는 형상이다. 히터에 단일펄스 가열을 하면 일정시간 경과 후 써미스터가 최고온도를 겪는다. 최고온도까지 걸리는 시간은 질량유량과 거의 반비례하며, 이를 이용하여 질량유량을 계측할 수 있다. 관벽을 통한 전도열전달과 액체유동에 의한 대류열전달이 복합적으로 작용하므로 관내유동의 평균속도와 관벽을 통한 최고온도의 이동속도는 큰 차이를 나타내며, 상호 비선형적인 특성을 보인다. 본 연구에서는 센서관의 내 외경, 히터의 권선폭 및 히터와 써미스터 사이의 거리를 설계변수로 고려하여 수치해석적으로 제안한 설계사항을 분석하였으며, 설계인자의 최적화에 대한 검토를 수행하였다.

초고속 열차 시스템을 위한 튜브 구조물의 기밀성 평가 : II. 시스템 실험 및 파라메터 해석 (Air-tightness Evaluation of Tube Structures for Super-speed Tube Railway Systems: II. System Test and Parametric Analysis)

  • 박주남;김이현;남성원
    • 한국철도학회논문집
    • /
    • 제14권2호
    • /
    • pp.151-159
    • /
    • 2011
  • 본 논문에서는 시공이음 및 세그먼트 연결부 등 불연속 구간을 포함하고 있는 튜브 구조물에 대한 기밀성 평가를 위해 실험에 기초한 연구를 수행하였다. 실제 진공튜브 시스템을 위해 적용 가능한 콘크리트 라이닝을 최대한 모사할 수 있도록 콘크리트 관 1개로 구성된 일체형 튜브(N1) 1기, 동 콘크리트 관 두 개를 연결시킨 연결식 튜브 시험체(N2) 1기, 그리고 콘크리트 세그먼트형 튜브(S) 1기 등 총 3기의 시험체를 제작하여 각 시험체에 대해 내부 기압을 0.1atm로 낮춘 후 시간에 따른 내부 기압의 변화를 측정하였다. 기밀성 실험 결과 얻어진 흐름 곡선으로부터 시스템의 등가 투기계수를 산출하였는데 이음부가 많을수록 시스템의 등가투기계수는 높아지는 경향을 보였다. 또한 실험 결과를 바탕으로 가정된 튜브 단면 변화에 따른 기밀성의 민감도를 해석적으로 분석하였는데 튜브 구조물의 두께 및 직경이 커질수록 시스템 기밀성이 더 향상될 뿐 아니라 기밀성 보강의 효과가 더욱 커진다는 것을 알 수 있었다.

저온 폐열회수용 진동세관형 히트파이프 열교환기의 작동 유체에 따른 열전달 특성 (Influence of Working Fluids to Heat Transfer Characteristics of the Heat Exchanger using Oscillating Capillary Tube Heat Pipe for Low Temperature Waste Heat Recovery)

  • 이욱현;임용빈;김정훈;김종수
    • 설비공학논문집
    • /
    • 제12권7호
    • /
    • pp.659-666
    • /
    • 2000
  • Heat transfer characteristics of a heat exchanger for low temperature waste heat recovery using oscillating capillary tube heat pipe were evaluated against the charge ratio variation of working fluid and various working fluids. R-l42b, R-22 and R-290 were used as working fluids. The heat exchanger was composed of heat pipe with capillary tube bundles, having a 2.6mm in outer diameter, 1.4mm in inner diameter with 101m long, and 40 turns. Charge ratio of working fluid was 40% and 50%. Water was used as secondary fluid. Inlet temperature and mass velocity for each secondary fluid were 297 K, 280 K and9~27 kg /$m^2s$,, respectively. From experimental results, it was found that heat transfer performance of R-22 was higher than those of R-l42b and R-290 and it was proportional to Figure of merit for thermosyphons. As a result, it was thought that R-22 was the most suitable working fluid of waste heat recovery for low temperature waste heat recovery.

  • PDF

마이크로핀관의 확관 전후 증발열전달 특성에 관한 실험적 연구 (An Experimental Study on Evaporative Heat Transfer Characteristics in Micro-Fin Tubes Before and After Expansion Process)

  • 전상희;황윤욱;윤석호;김민수
    • 설비공학논문집
    • /
    • 제12권10호
    • /
    • pp.932-940
    • /
    • 2000
  • An experimental study on evaporative heat transfer characteristics in micro-fin tubes before and after expansion process has been performed with R-22. Single-grooved micro-fin tubes with outer diameter of 9.52 mm were used as test sections, and it was uniformly heated by applying direct current to the test tubes. Experiments were conducted at mass flow rates of 20 and 30 kg/hr. For each mass flow rate condition, evaporation temperature was set at 5 and $15^{\circ}C$and heat flux was changed from 6 to 11 kW/$m^2$ The evaporative heat transfer coefficient of micro-fin tubes after expansion is decreased because of the crush of fins and enlargement of inner diameter compared to that before expansion. Convective boiling effect decreased remarkably at higher quality range in the micro-fin tube after expansion, and the difference of the heat transfer coefficient in micro-fin tubes before and after expansion was greater for higher quality region. The evaporative heat transfer coefficient of the micro-fin tube after expansion was 19.9% smaller on the average than that before expansion.

  • PDF