• Title/Summary/Keyword: Inlet flow path

Search Result 71, Processing Time 0.026 seconds

Numerical Simulation of Turbulent Flows in Inlet Duct of Heat Recovery Steam Generator (배열회수 안내덕트 내부의 난류유동 수치시뮬레이션)

  • Kwag, Seung-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.809-813
    • /
    • 2011
  • Turbulent flows are numerically simulated in the three dimensional inlet duct for heat recovery steam generator. The present study is aimed to analyze the effect of a variation in turbulent flow pattern by the change of roof angle in the transition duct. The finite volume based Navier-Stokes equations with unstructured grids are solved to make clear the flow dynamic phenomena. Reviews are made on with the data of path lines, velocity vectors, dynamic pressure, residuals for numerical convergence and so on. The k-epsilon, k-omega, Reynolds stress and RNG k-epsilon are used for generation of turbulence. Two types of roof angle are applied with and without the swirl in the duct. Turbulent flow patterns could be investigated for the optimum duct design based on the computational results.

Effective Performance Prediction of Axial Flow Compressors Using a Modified Stage-Stacking Method (단축적법의 개선에 의한 축류압축기의 효과적인 성능예측)

  • Song, Tae-Won;Kim, Jae-Hwan;Kim, Tong-Seop;Ro, Sung-Tack
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.8
    • /
    • pp.1077-1084
    • /
    • 2000
  • In this work, a modified stage-stacking method for the performance prediction of multi-stage axial flow compressors is proposed. The method is based on a simultaneous calculation of all interstage variables (temperature, pressure, flow velocity) instead of the conventional sequential stage-by-stage scheme. The method is also very useful in simulating the effect of changing angles of the inlet guide vane and stator vanes on the compressor operating characteristics. Generalized stage performance curves are used in presenting the performance characteristics of each stage. General assumptions enable determination of flow path data and stage design performance. Performance of various real compressors is predicted and comparison between prediction and field data validates the usefulness of the present method.

Simulation of East Sea Circulation in a Laboratory Experiment of Rotating Cylindrical Container (동해 해수순화 모의를 위한 회전반 실험)

  • 나정열;최진영
    • 한국해양학회지
    • /
    • v.30 no.1
    • /
    • pp.57-63
    • /
    • 1995
  • Two-layered fluid with sloping bottom and top(${\beta}$-effect) in rigid cylinder is put on the rotating table. To drive the lower-layer motion in "the Sverdrup type" flow external fluid is pumped into the lower-layer. By introducing inlet-outlet system in the upper-layer, an analogy to the Tsushima Tsugaru, Soya of the East Sea has been tested. The position of the inlet-outlet system and the difference between the strength of inlet or outlet flow are changed to see the effects of the wind stress on the upper-layer. The northern part of inflow toward the outlet may be interpreted roughly as the position of the polar front in the East Sea. Experimental observations have revealed that the inflow flows along the western boundary before it separates into the interior and flows straight toward the outlet position. However, the wind effect is imposed upon the upper-layer, the western boundary flow branches into two parts of which one flows along the boundary and the other flows into the interior under the influence of negative wind stress curl, while southward western boundary flow seems to block the flow and deflect it to the interior. The changes in the position of inlet-outlet system produce more significant changes in flow pattern in that cyclonic flow in the north controls the northern extent of the polar front by deflecting the northward interior motion toward the west(outlet). Interface displacement which depends strongly on the velocity difference between two layers seems to play crucial role in terms of the path of upper-layer flow, particularity, the inflow.

  • PDF

Reduction of Noise and Input Power in Fuel Cell Blower by Controlling Flow Path (연료전지 블로워의 유로 크기에 따른 소비전력과 소음저감 방법)

  • Tak, Bong-Yeol;Kim, Chan-Kyu;Lee, So-A;Jang, Choon-Man
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.90.2-90.2
    • /
    • 2011
  • This paper describes performance enhancement of a fuel cell's blower by controlling flow path. Different duct diameter at the inlet and outlet of the blower is selected for reducing blower noise level and input power. Hole diameter and the number of hole at the check valve are tested to reduce the input power of the blower. Two types of blower, fuel pressurized blower and cathode blower, are considered in the present study. Throughout experimental measurements of the test blowers, it is found that duct diameter is effective to reduce noise level and input power in the fuel cell blower. Noise reduction due to the optimal duct diameter at the outlet is more effective when flow rate is relatively large. That is, cathode blower has larger noise reduction compared to fuel pressurized blower because of larger flower rate. Input power of the blower can be reduced by controlling the hole diameter and the number of hole at the check valve.

  • PDF

A Study on Flow Characteristics of the Inlet Shape for the S-Duct (S-Duct 입구 형상에 따른 유동 특성에 관한 연구)

  • Lee, Jihyeong;Choi, Hyunmin;Ryu, Minhyoung;Cho, Jinsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.2
    • /
    • pp.109-117
    • /
    • 2015
  • Aircraft needs an inlet duct to supply the airflow to engine face. A fighter aircraft that requires low radar observability has to hide the engine face in the fuselage to reduce the Radar Cross Section(RCS). Therefore, the flow path of the inlet duct is changed into S-shape. The performance of the aircraft engine is known to be influenced by the shape and the centerline curvature of the S-Duct. In this study, CFD analysis of the RAE M 2129 S-Duct has been performed to investigate the influence of aspect ratio of inlet geometry. The performance of the S-Duct is evaluated in terms of the distortion coefficient. To simulate the flow under adverse pressure gradient better, $k-{\omega}SST$ turbulence model is employed. The computational results are validated with the ARA experimental data. The secondary flow and the flow separation are observed for all computational cases, while the semi-circular geometry has been found to produce the best results.

Thermal Analysis of a Spent Fuel Storage Cask under Normal and Off-Normal Conditions (사용후핵연료 저장용기의 정상 및 비정상조건에 대한 열해석)

  • Ju-Chan Lee;Kyung-Sik Bang;Ki-Seog Seo;Ho-Dong Kim;Byung-Il Choi;Heung-Young Lee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.2 no.1
    • /
    • pp.13-22
    • /
    • 2004
  • This study presents the thermal analyses of a spent fuel dry storage cask under normal and off-normal conditions. The environmental temperature is assumed to be 15 $^{\circ}C$ under the normal condition. The off-normal condition has an environmental temperature of 38 $^{\circ}C$. An additional off-normal condition is considered as a partial blockage of the air inlet ducts. Two of the four air inlet ducts are assumed to be completely blocked. The significant thermal design feature of the storage cask is the air flow path used to remove the decay heat from the spent fuel. Natural circulation of the air inside the cask allows the concrete and fuel cladding temperatures to be maintained below the allowable values. The finite volume computational fluid dynamics code FLUENT was used for the thermal analysis. The maximum temperatures of the fuel rod and concrete overpack were lower than the allowable values under the normal and off-normal conditions.

  • PDF

The experimental study on the counter-current flow limit in the flow path with a porous plate (다공판 유로내의 유동한계(CCFL)에 대한 실험적 연구)

  • Lee, Jin-Ki;Yang, Seung-Woo;Kwon, Jung-Tae;Kang, Yong-Tae
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.176-181
    • /
    • 2006
  • Experiments of Counter-Current Flow Limit(CCFL or Flooding) is performed to improve the drawbacks of Wallis' Correlation which neglects the effects of channel size, channel length, injection method and the boundary conditions at the inlet of liquid and gas phase. In this study, CCFL is observed by changing shape of porous plate using air and water. Results show that as the size of porous increases, CCFL with round shape of the porous plate decreases. In the present study, a CCFL correlation is developed and the CCFL map is proposed based on the present experimental results. developed by this experimental study.

  • PDF

Optimum Design of an Indoor Package Air-Conditioner's Flow Path by Taguchi Method (다구찌 방법에 의한 PAC 실내기 유로의 최적설계)

  • Kim, Jang-Kweon;Oh, Seok-Hyung
    • Journal of Power System Engineering
    • /
    • v.18 no.1
    • /
    • pp.32-37
    • /
    • 2014
  • In this study, the optimum design process of an indoor package air-conditioner (PAC) was implemented by Taguchi method. The goal of this study is to obtain the best set condition of each control factor composing of an indoor PAC. The number of revolution of a double inlet sirocco fan installed in an indoor PAC was measured by the orthogonal array of $L_{18}(2^3{\times}3^4)$ and analysed by using the-smaller- the-better characteristic among the static characteristic analyses. As a result, the optimum condition of an indoor PAC was found as a set of when the cost of production, assembling and working conditions were considered. Moreover, the number of revolution of a double-inlet sirocco fan used for an optimum condition was reduced about 8.5% more than that of a standard condition for the target flowrate of $18.5m^3/min$.

A Numerical Study on the Flow Uniformity according to Chamber Shapes Used for Test of the Semi-Conductor Chip (반도체 칩 테스트용 챔버 형상에 따른 유동 균일성에 대한 수치적 연구)

  • LEE, DAEGYU;MA, SANG-BUM;KIM, SUNG;KIM, JEONG-YEOL;KANG, CHAEDONG;KIM, JIN-HYUK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.5
    • /
    • pp.480-488
    • /
    • 2020
  • This study was conducted to improve the flow uniformity inside the chip tester through changing the flow path formation according to the inlet and outlet position of chamber. The internal flow and velocity distributions of the modified chamber models (Cases 1-3) were compared with the reference chamber model through three-dimensional Reynolds-averaged Navier-Stokes equations with k-ε turbulence model. The modified chamber models showed the superior flow uniformity characteristics compared to the reference chamber model. To investigate the flow uniformity in the chip tester, the standard deviation of the velocity was defined and compared. Through the internal flow analysis and assesment of the standard deviation, Case 2 among the test cases including the reference model showed the best flow uniformity generally.

Analysis of Thermal Flow Characteristics according to the Opening Ratio of High-Pressure Valve for Hydrogen Storage Tank (수소 저장 탱크용 고압 밸브의 개도율에 따른 열·유동 특성 분석)

  • JUNG, DA WOON;CHOI, JIN;SUH, HYUN KYU
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.5
    • /
    • pp.525-533
    • /
    • 2022
  • In this study, in order to numerically analyze the heat flow characteristics in the valve according to the opening rate for the solenoid valve for hydrogen supply applied to the hydrogen storage tank, flow characteristics were comparatively analyzed. Through the analysis of pressure and temperature distributions within the valve according to the high-pressure supply condition of 70 MPa or more, the heat flow characteristics in the valve, inlet and outlet passage according to the opening rate of the valve were identified. As a result a sudden change in the fluid behavior appears in the neck region of the valve, and it is understood that the flow separation caused by the flow path shape of the expanded tube has a dominant influence on the flow characteristics. And, it was confirmed that the shape of the valve seat is a factor significantly affecting the improvement of flow rate and differential pressure performance.