• Title/Summary/Keyword: Inlet & outlet temperature

Search Result 360, Processing Time 0.029 seconds

Effects of Soil and Air Flow Characteristics on the Soil-Air Heat Exchanger Performances (토양과 공기유동특성이 토양-공기 열교환기 성능에 미치는 영향)

  • 김영복;김기영
    • Journal of Biosystems Engineering
    • /
    • v.23 no.1
    • /
    • pp.21-30
    • /
    • 1998
  • A theoretical model was developed to evaluate the effects of soil and airflow characteristics on the soil-air heat exchanger performances. The model, which includes three-dimensional transient energy and mass equilibrium-equation, was solved by using a computer program that uses Finite Difference Methods and Gauss-Seidel iteration computation. Energy gains, heat exchange efficiencies, and outlet air temperature are presented including the effects of soil moisture content, soil conductivity, soil thermal diffusivity, and soil initial temperature. Also, data related to the effects of airflow rate and inlet air temperature on the thermal performance of the system are presented. The results indicated that energy gains depend on soil conductivity, soil thermal diffusivity, and soil initial temperature. Heat exchange efficiencies relied on air mass flow rate and soil moisture content.

  • PDF

Exergy Analysis of Solar Collector

  • 이석건;이현우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.E
    • /
    • pp.74-79
    • /
    • 1990
  • Important factors in evaluating solar collcetor efficiency are solar radiation, temperature and flow rate of the working fluid. The effects of these factors on the energy and the exergy gained by water, the working fluid, from the collector were analyzed. The results indicated that the collector efficiency and the energy and the exergy gained by the water from the collcetor increased with the increase of solar radiation. According to the exergy analysis, as the water temperature at the inlet of the collector increased, the exergy gained by the water increased while the energy gained by the water decreased. The water temperature at the outlet of the collector could be calculated with a mean error of 2.8%, and the energy and the exergy could be calculated theoretically with mean errors of 16.8% and 19.1%, respcetively.

  • PDF

Study on Prediction of High Temperature Thermal Behavior of, Automotive Catalytic Converters with Oval Type (오벌형 자동차 촉매 컨버터의 고온 열적 거동 예측에 관한 연구)

  • 허형석;원종필;이규현
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.15-22
    • /
    • 2002
  • Considering the high temperature durability, the most important issue is to accurately predict the maximum operating temperature of the shell, mat and substrate. This temperature prediction then defines the material selections far the mat, shell and cones, and allows an assessment to be made as to the necessity of heat shielding. In this papers, The commercial code FLUENT was utilized to simulate automotive oval type catalytic converters, with the objective of predicting thermal behavior under steady-state, high-load conditions. Specialized computational models are used to account for effects of heat and mass transfer in the monolith, conjugate heat transfer in the various converter materials, and radiation heat transfer.

Performance Analysis of a Vertical Double Pipe Heat Exchanger for Latent Heat Storage (수직이중관형 잠열축열장치의 성능분석)

  • Kim, Young-Bok;Song, Hyun-Kap
    • Solar Energy
    • /
    • v.10 no.1
    • /
    • pp.38-46
    • /
    • 1990
  • For the optimal design and the efficient operation of the double pipe type latent heat storage equipment, the effect of the parameters of the system were analysed. The statistical analysis showed that the theoretical and the experimental results of the volume change rate and the temperature variations were well agreed. Therefore, this theoretical model is reasonable to analyze two dimensional moving boundary problems. In the analysis of the effects of the parameters, the heat extraction fraction and the water outlet temperature of the system as function of the time were analysed depending on the initial temperature of PCM, water inlet temperature, water mass flow rate and the dimension of the inner tube.

  • PDF

An Experimental Study on the Operating Performance of an Air Shift type Heat Pump with Heat Exchanger (전열교환기가 설치된 기류전환형 히트펌프의 동계운전성능에 관한 실험적 연구)

  • Jang, Young-Keun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.8
    • /
    • pp.567-572
    • /
    • 2010
  • Air shift type heat pump is combined heat recovery ventilator and refrigerator, and it is installed an air shifter changing air flow. And so it is an perfect AHU(Air Handling Unit) capable to cooling, heating, ventilation and heat recovery. Therefore, an experimental study has been carried out to investigate the operating performance in winter for this system. An experimental data are room temperature, inlet/outlet temperature of condenser, evaporator and heat exchanger. They have been measured as the variation of outdoor temperature. The results, in case of rising above freezing, the air shift type heat pump system is operated normally, and the heating COP is 3.0~4.2 by varying outdoor temperature from $-3^{\circ}C$ to $15^{\circ}C$.

A Study of Performance Characteristics on Portable Air Conditioner by Using Condensation Water (응축수를 이용한 이동식 에어컨의 성능특성에 관한 연구)

  • Kim, Jae-Dol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.6
    • /
    • pp.762-767
    • /
    • 2012
  • This study presents the effect which the condensation water affects on performance characteristics of apparatus when the condensation water injects to the condenser. The experimental results are the following. The inlet outlet refrigerant temperature in condenser and outlet air temperature showed a little lower than that of the existing method. Also, the refrigeration capacity and COP(coefficient of performance) increased about 3%, 13~16% and the compressor work decreased about 27% than that of the conventional method. So, these results contribute not only the performance improvement of apparatus but also the solution of problem according to the discharge of periodic condensation water.

Effects on Refrigerant Maldistribution on the Performance of Evaporator

  • Lee, Jin-Ho;Kim, Chang-Duk;Byun, Ju-Suk;Jang, Tae-Sa
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.13 no.2
    • /
    • pp.107-118
    • /
    • 2005
  • An experimental investigation was made to study two-phase flow distribution in a T-type distributor of slit fin-and-tube heat exchanger using R-22. Experiments were carried out under the conditions of saturation temperature of $5^{\circ}C$ and mass flow rate varying from 0.6 to 1.2kg/min. The inlet air has dry bulb temperature of $27^{\circ}C$, relative humidity of 50% and air velocity varying from 0.63 to 1.71m/s. A comparison was made between the predictions from the previously proposed tube-by-tube method and the present experimental data for the heat transfer rate of evaporator. Results show that $82.5\%$ increase of air velocity is needed for T-type distributor with four outlet branches than that of two outlet branches under the superheat of $5^{\circ}C$, which resulted in increasing of air-side pressure drop of $130\%$ for the former as compared to the latter.

A Preliminary Analysis of Large Loss-of-Coolant Induced by Emergency Core Coolant Pipe Break in CANDU-600 Nuclear Power Plant

  • Ion, Robert-Aurelian;Cho, Yong-Jin;Kim, In-Goo;Kim, Kyun-Tae;Lee, Jong-In
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.435-440
    • /
    • 1996
  • Large Loss-of-Coolant Accidents analyzed in Final Safety Analysis Reports are usually covered by Reactor Inlet Header. Reactor Outlet Header and Primary Pump Suction breaks as representative cases. In this study we analyze the total (guillotine) break of an Emergency Core Cooling System (ECCS) pipe located at the ECCS injection point into the Primary Heat Transport System (PHTS). It was expected that thermal-hydraulic behaviors in the PHT and ECC systems are different from those of a Reactor Inlet Header break, having an equivalent break size. The main purpose of this study is to get insights on the differences occurred between the two cases and to assess these differences from the phenomenon behavior point of view. It was also investigated whether the ECCS line break analysis results could be covered by header break analysis results. The study reveals that as the intact loop has almost the same behavior in both analyzed cases. broken loop behavior is different mostly regarding sheath temperature in the critical core pass and pressure decrease in the broken Reactor Inlet Header. Differences are also met in the ECCS behavior and in event sequences timings.

  • PDF

Analysis of Smoke Control According to Jet Fan Location in Straight Long Tunnel (제트 팬 설치 위치에 따른 직선터널 내의 제연해석)

  • Byun, Ju-Suk;Lim, Hyo-Jae;Kang, Shin-Hyung;Lee, Jin-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.9
    • /
    • pp.662-668
    • /
    • 2007
  • In this study, jet fans are installed with 4 cases in the straight long tunnel; inlet-side setup, middle-side setup, outlet-side setup, and dispersion setup. A bus is selected as fired car, of which fire size is 20MW. And fired car locates at 100m, 700m, 1500m position from tunnel inlet, respectively. FLUENT, commercial finite-volume code, is used to analyze the performance. The velocity profile, $CO_2$ concentration, temperature distribution are examined for analysis. Performance of smoke control is compared by the backlayering length. Consequently, inlet-side setup of jet fans is a little more efficient than other cases considering the fire occurrence frequency in tunnel.

The Effect of Temperature on SCC of Heat Exchanger Tube for LNG Vessel (LNG선박 열교환기 세관의 SCC에 미치는 용액의 온도의 영향)

  • Jeong Hae Kyoo;Lim Uh Joh
    • Journal of the Korean Institute of Gas
    • /
    • v.8 no.1 s.22
    • /
    • pp.1-6
    • /
    • 2004
  • In general, inlet temperature of cooling sea water for steam turbine condenser is about $25^{\circ}C$ and outlet temperature is about $60^{\circ}C$. For oil cooler, outlet temperature is about $40^{\circ}C$. Therefore corrosion heavily depends on the temperature of the coolant of a heat exchanger system. It is necessary to set the temperature of the cooling water to have maximum heat transfer efficiency. This paper was studied on the effect of temperature on SCC of Al-brass which is used as a tube material of vessel heat exchanger in $3.5\%$ NaCl + $0.1\%\;NH_4OH$ solution under flow by constant displacement tester. Based on the test results, the behavior of polarization characteristic, stress corrosion crack popagation and dezincification characteristic of Al-brass was investigated.

  • PDF