• 제목/요약/키워드: Inkjet printing

검색결과 277건 처리시간 0.031초

압전 프린트 헤드에 의한 금속프린팅의 미세패턴제어 (Micro Pattern Control of Metal Printing by Piezoelectric Print-head)

  • 윤신용;최근수;백수현;장홍순;서상현
    • 한국전기전자재료학회논문지
    • /
    • 제24권2호
    • /
    • pp.147-151
    • /
    • 2011
  • We were analyzed the piezoelectric characteristic for electronics printing to inkjet printing system. These applications were possible use to Actuator, MEMS, FPCB, RFID, Solar cell and LCD color filter etc. Piezoelectric print head is firing from ink droplet control consideration ink viscosity properties. At this time, micro pattern for PCB metal printing was possible by droplet control of piezoelectric driving. These driving characteristics are variable voltage pulse waveform. We are used the piezoelectric analysis software of Finite Element Method (FEM), Piezoelectric design parameters are acquired from piezoelectric analysis, and measurement of piezoelectric. It designed for piezoelectric head to possible electric print pattern of inkjet printing system. For this validity we were established through in comparison with simulation and measurement. Designed piezoelectric specification obtained voltage 98V, firing frequency 10 kHz, resolution 360dpi, drop volume 20pl, nozzle number 256, and nozzle pitch 0.33 mm.

Ultrafine ITO Nanoparticle for Ink Jet Printing

  • Hong, Sung-Jei;Kim, Yong-Hoon;Han, Jeong-In
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권1호
    • /
    • pp.467-470
    • /
    • 2007
  • Ultrafine Indium tin oxide (ITO) nanoparticle was successfully fabricated by low temperature synthetic method (LTSM). Mean size of ITO nanoparticle is 5 nm, and uniformly dispersed with (222) orientated cubic structure. Using the nanoparticle, ITO thin film with good optical and electrical properties was fabricated by inkjet printing.

  • PDF

Dielectric Properties of ink-Jet printed $Al_2O_3$-resin Hybrid Films

  • Hwang, Myung-Sung;Jang, Hun-Woo;Kim, Ji-Hoon;Kim, Hyo-Tae;Yoon, Young-Joon;Kim, Jong-Hee;Moon, Joo-Ho
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.81-81
    • /
    • 2009
  • Non-sintered Alumina films were fabricated via inkjet printing processes without a high temperature sintering process. The packing density of these inkjet-printed alumina films measured around 60%. Polymer resin was infiltrated thru these non-sintered films in order to fill out the 40% of voids constituting the rest of the inkjet-printed films. The concept of inkjet-printed Alumina-Resin hybrid materials was designed in order to be applicable to the ceramic package substrates for 3D-system module integration which may possibly substitute LTCC-based 3D module integration. So, the dielectric properties of these inkjet-printed $Al_2O_3$ hybridmaterialsareofourgreatinterest. We have measured dielectric constant and dissipation factor of the inkjet-printed $Al_2O_3$-resinhybridfilmsbyvaryingtheamountofresininfiltratedthruthe$Al_2O_3$films.

  • PDF

All Inkjet Printed Plastic RFID Tag

  • Cho, Gyou-Jin;Song, Jae-Hee;Jung, Min-Hoon;Lee, Bock-Im;Kim, Sun-Hee;Lim, Nam-Soo;Lee, Na-Young
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.171-171
    • /
    • 2006
  • In this presentation, we would like to report an inkjet printing method to produce 1 to 2 bit RFID tag working in the range of 6 to 28 MHz with or without transistors. The inkjet printing method especially for the formation of transistors, inductors, capacitors will be presented by the view of polymer chemistry. This presentation also includes the printing schemes for memory cell, ring oscillator, rectifier, antenna, and so forth for constructing RFID tag. I illustrate these strategies by describing recent my works on the formation of all SWNT-TFT and conducting polymer-silver nanocomposite inks that can be applied in the construction of electronic devices.

  • PDF

잉크젯 프린팅 공정에 의한 유전체 후막의 제조 및 특성 (Structure and Properties of Polymer Infiltrated Alumina Thick film via Inkjet Printing Process)

  • 장헌우;구은회;김지훈;김효태;윤영준;황해진;김종희
    • 한국전기전자재료학회논문지
    • /
    • 제22권4호
    • /
    • pp.297-302
    • /
    • 2009
  • We have successfully fabricated the alumina thick films using inkjet printing processes without a high temperature sintering process. Alumina suspension as dielectric ink was formulated by combining nano-sized alumina powders with an anionic polymer dispersant in formamide/water as co-solvent. The thickness of the printed alumina thick film was measured at around 5 um by field emission scanning electron microscope. The calculated packing density of 68.5 % from the printed alumina thick film was much higher than the same films fabricated by conventional casting or dip coating processes. Q factor of the dielectrics thick film infiltrated with cyanate ester resin was evaluated by impedance analyzer.

CCD 카메라를 사용한 전기수력학적 잉크젯 토출 현상 가시화 (Visualization of Electro-hydrodynamic Ink Jetting using CCD Camera)

  • 권계시;이대용
    • 한국정밀공학회지
    • /
    • 제29권3호
    • /
    • pp.295-301
    • /
    • 2012
  • The method for spraying of liquids through an electrical field has become a printing method since it can make very small droplet. For electro-hydrodynamic jet printing to become a reliable jetting tool, the jetting performance should be characterized with respect to various jetting conditions. To optimize jetting conditions, the jetting behavior should be measured. In this study, we present a visualization techniques to measure jetting behavior from electro-hydrodynamic (EHD) inkjet head. Unlike most previous method, we use the CCD camera to measure the jetting behavior. For this purpose, LED light is synchronized with jetting signal and sequential image was obtained by adjusting the delay time of the LED light. Finally, merits and demerits of using CCD camera were discussed to measure jetting image from EHD inkjet head.

잉크젯 프린팅을 이용한 CNT-FED의 전계 방출 특성 (Field emission characteristics of CNT-FED using ink-jet printing)

  • 송진원;윤여환;한창수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.426-426
    • /
    • 2007
  • We report the field emission characteristics of transparent single-walled carbon nanotube (SWNT) film printed using an inkjet. Pure SWNTs dispersed in dimethylformamide were printed in a transparent layer on indium-tin oxide-coated glass and annealed at $350^{\circ}C$. After taping treatment, SWNTs were oriented vertically on the substrate. The front and the back of the fabricated device produced simultaneous emissions of identical quality. In addition, inkjet printing directly achieved a patterned emission, without a secondary pattern process. This method allows simple fabrication using only SWNTs, without the use of other additives.

  • PDF

Screen-printed Source and Drain Electrodes for Inkjet-processed Zinc-tin-oxide Thin-film Transistor

  • Kwack, Young-Jin;Choi, Woon-Seop
    • Transactions on Electrical and Electronic Materials
    • /
    • 제12권6호
    • /
    • pp.271-274
    • /
    • 2011
  • Screen-printed source and drain electrodes were used for a spin-coated and inkjet-processed zinc-tin oxide (ZTO) TFTs for the first time. Source and drain were silver nanoparticles. Channel length was patterned using screen printing technology. Different silver nanoinks and process parameters were tested to find optimal source and drain contacts Relatively good electrical properties of a screen-printed inkjet-processed oxide TFT were obtained as follows; a mobility of 1.20 $cm^2$/Vs, an on-off current ratio of $10^6$, a Vth of 5.4 V and a subthreshold swing of 1.5 V/dec.

잉크젯 프린팅 공정을 이용한 3D Integration 집적 기술의 무소결 고충진 유전체막 제조 (Inkjet Printing Process to Fabricate Non-sintered Low Loss Density for 3D Integration Technology)

  • Jang, Hun-Woo;Kim, Ji-Hoon;Koo, Eun-Hae;Kim, Hyo-Tae;Yoon, Young-Joon;Hwang, Hae-Jin;Kim, Jong-Hee
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.192-192
    • /
    • 2009
  • We have successfully demonstrated the inkjet printing process to fabricate $Al_2O_3$ thick films without a high temperature sintering process. A single solvent system had a coffee ring pattern after printing of $Al_2O_3$ dot, line and area. In order to fabricate the smooth surface of $Al_2O_3$ thick film, we have introduced a co-solvent system which has nano-sized $Al_2O_3$ powders in the mixture of Ethylene glycol monomethyl ester and Di propylene glycol methyl ether. This co-solvent system approached a uniform and dense deposition of $Al_2O_3$ powders on the substrate. The packing density of inkjet-printed $Al_2O_3$ films is more than 70% which is very high compared to the value obtained from the films synthesized by other conventional methods such as casting processes. The characterization of the inkjet-printed $Al_2O_3$ films has been implemented to investigate its thickness and roughness. Also the dielectric loss of the films has been measured to understand the feasibility of its application to 3D integration package substrate.

  • PDF