• Title/Summary/Keyword: Injection well design

Search Result 141, Processing Time 0.029 seconds

Development of Micro-Optical Patterned LCD-LGP using UV Inclined-Exposure Process (UV 경사노광에 의한 미세광학패턴 LCD-도광판)

  • Hwang C. J.;Kim J. S.;Ko Y. B.;Heo Y. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.51-54
    • /
    • 2005
  • Light Guide Plate (LGP) of LCD-BLU(Back Light Unit) is manufactured by forming optical pattern with $5\~100um$ in diameter on the LGP by means of sand blasting or etching method. However, in order to improve the luminance of LCD-LGP, the design of optical pattern has introduced UV inclined-exposure process in this study. This micro-optical pattern, which has asymmetric elliptical column shaped pattern, can change low viewing-angle to high viewing-angle, as well as it contribute to diffusion of light. As a result, this type of micro-optical pattern can introduce the highly luminance. The PR structure obtained in the stage of lithography has asymmetric elliptical column shape and it is processed into a micro-optical pattern. Optical design with this kind of micro-optical pattern, mold fabrication by electroplating and LGP molding with injection molding are under way.

  • PDF

Kinematic Modeling and Analysis of a Toggle Mechanism for Injection Molding Machines (사출성형기를 위한 토글 메카니즘의 기구학적 모델링 및 해석)

  • Cho, Seung Ho;Jon, Yun-Son;Kim, Young Shin;Park, Kyeong Ha
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.2
    • /
    • pp.216-222
    • /
    • 2013
  • This paper deals with the issue of kinematic modeling and analysis of a toggle mechanism. Based on the mathematic model of a conventional five-point type toggle mechanism. New five-point type toggle mechanism has been analyzed by computer simulation method. A sensitivity ratio has been defined and analyzed to compare its performance with four-point type toggle mechanism. A cycloidal motion has been applied to the cross head as an input and the motion of the moving platen is considered as an output. The effect of link design parameter as well as the type of toggle has been investigated by computer simulation to be available for industrial applications of injection molding machines.

An Optimal Design of Gas Lift in Offshore Oil Reservoirs Considering Oil and Injected Gas Composition (해저 오일 저류층 내 오일 및 주입가스 조성에 따른 가스리프트 공법의 최적 설계)

  • Kim, Young-Min;Shin, Chang-Hoon;Lee, Jeong-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.4
    • /
    • pp.39-48
    • /
    • 2018
  • This study presents optimal design of gas lift considering composition of reservoir oil and injected gas which can affect gas lift performance in offshore oil reservoir. Reservoir simulation was conducted by using reservoir models which were built in accordance with API gravity of oil. The results of simulation reveal that oil production rate is considerably increased by gas lift when the reservoir productivity decrease. As a results of response curve analysis for gas lift using well models, gas injection rate to improve the production rate increases as the API gravity of oil decreases and the specific gravity of injected gas increases. The optimal design of gas lift was carried out using multiple lift valves. Consequently, gas lift can be operated at relatively low injection pressure because of decrease in injection depth in comparison to the single lift valve design. The improved oil production rates were analyzed by coupling between reservoir model and well model. As a results of the coupling, it is expected that natural gas injection in the heavy oil reservoir is the most efficient method for improving oil production by gas lift.

Study on Heterojunction Injection Pulley Fabrication for Development of a High-Strength and Light-Weight Industrial Pulley (고강도 경량화 산업용 풀리 개발을 위한 이종접합 사출풀리 제작에 관한 연구)

  • You, Kwan-jong;Bae, Sung-ryong;Kim, Jae-yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.6
    • /
    • pp.76-81
    • /
    • 2019
  • In the mold-manufacturing field, various methods of advanced production technology are being used in the production of industrial-grade gear pulleys. Among the current methods are injection molding, hoop molding, insight molding, two-material molding, compound-mold molding, as well as engineering plastic mold. Currently, casting pulleys are inexpensive because they are produced in small quantities. However, they produce complications during the manufacturing process, are very unreasonable for mass production, and are disadvantageous in cost competitiveness. Pulleys are divided into hundreds of kinds and thousands of kinds, so the production methods vary. As these pulleys are made of a single material by a casting and welding method, they are not manufactured using injection molds consisting of different materials. In this research, pulleys, shafts, and reinforced plastic materials were incorporated using ANSYS software, and a low-cost, lightweight technology was applied for trial production with optimum design and extrusion technology.

A Study on the Ontology-based Design Process Modeling (온톨로지 기반 설계 프로세스 모델링에 관한 연구)

  • Kim J.K.;Kang M.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.632-636
    • /
    • 2005
  • Design process model represents how a design project proceeds. It encompasses the individual activities of design, their precedence relationships, and the relevant information related to each activity. In contrast to the conventional visual representation methods, ontology-based process model is machine-readable, and therefore it can be implemented in a software system without repeating the whole steps of coding, compiling and link. This paper proposes a framework for design process ontology that defines the relevant objects and attributes in the design process as well as the relationships between them. An example for injection mold design process is shown to explain the substance of the design process model.

  • PDF

A Study of GDI+MPI Engine Operation Strategy Focusing on Fuel Economy and Full Load Performance using DOE (실험계획법에 의한 가솔린 GDI+MPI 엔진의 연비 및 성능향상 관점에서의 운전영역별 연료분사 전략에 관한 연구)

  • Kim, Dowan;Lee, Sunghwan;Lim, Jongsuk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.42-49
    • /
    • 2014
  • The gasoline direct injection (GDI) system is considerably spreading in automotive market due to its advantages. Nevertheless, since GDI system emit higher particle matter (PM) due to its combustion characteristics, it is difficult to meet strengthened emission regulation in near future. For this reason, a combined GDI with MPI system, so-called, dual injection (DUI) system is being investigated as a supplemental measure for the GDI system. This paper focused on power and fuel consumption effect by injection mode strategy of DUI system in part load and idle engine operating condition. In this study, port fuel injectors are installed on 2.4 liters GDI production engine in order to realize DUI system. And, at each injection mode, DOE (design of experiment) method is used to optimize engine control parameters such as dual injection ratio, start of injection timing, end of injection timing, CAM position and so on. As a consequence, DUI mode shows slightly better or equivalent fuel efficiency compared to conventional GDI engine on 9 points fuel economy mode as well as MPI mode shows less fuel consumption than GDI mode during idle operation. Furthermore, DUI system shows improvement potential of maximum 2.0% fuel consumption and 1.1% performance compared to GDI system in WOT operating condition.

Review of Injection-Locked Oscillators

  • Choo, Min-Seong;Jeong, Deog-Kyoon
    • Journal of Semiconductor Engineering
    • /
    • v.1 no.1
    • /
    • pp.1-12
    • /
    • 2020
  • Handling precise timing in high-speed transceivers has always been a primary design target to achieve better performance. Many different approaches have been tried, and one of those is utilizing the beneficial nature of injection locking. Though the phenomenon was not intended for building integrated circuits at first, its coupling effect between neighboring oscillators has been utilized deliberately. Consequently, the dynamics of the injection-locked oscillator (ILO) have been explored, starting from R. Adler. As many aspects of the ILO were revealed, further studies followed to utilize the technique in practice, suggesting alternatives to the conventional frequency syntheses, which tend to be complicated and expensive. In this review, the historical analysis techniques from R. Adler are studied for better comprehension with proper notation of the variables, resulting in numerical results. In addition, how the timing jitter or phase noise in the ILO is attenuated from noise sources is presented in contrast to the clock generators based on the phase-locked loop (PLL). Although the ILO is very promising with higher cost effectiveness and better noise immunity than other schemes, unless correctly controlled or tuned, the promises above might not be realized. In order to present the favorable conditions, several strategies have been explored in diverse applications like frequency multiplication, data recovery, frequency division, clock distribution, etc. This paper reviews those research results for clock multiplication and data recovery in detail with their advantages and disadvantages they are referring to. Through this review, the readers will hopefully grasp the overall insight of the ILO, as well as its practical issues, in order to incorporate it on silicon successfully.

Development of a Spray-Injection Patching System and a Field Performance Evaluation of 100% RAP Asphalt Mixtures using a Rapid-Setting Polymer-Modified Asphalt Emulsion (아스팔트 긴급보수용 스프레이 패칭 장비 개발 및 현장 적용성 평가)

  • Han, Soo Hyun;Lee, Sang Yum;Rhee, Suk Keun;Kwon, Bong Ju
    • International Journal of Highway Engineering
    • /
    • v.20 no.1
    • /
    • pp.77-85
    • /
    • 2018
  • PURPOSES : The purpose of this study was to develop an urgent road-repair system and perform a field applicability test, as well as discover the optimum mix design for machine applications compared to the optimum mix design for lab applications. METHODS : According to reviews of the patent and developed equipment, self-propelled and mix-in-place equipment types are suitable for urgent pavement repair, e.g., potholes and cracks. The machine-application mix design was revised based on the optimum lab-test mix design, and the field application of a spray-injection system was performed on the job site. The mixture from the machine application and lab application was subjected to a wet-track abrasion test and a wheel-tracking test to calibrate the machine application. RESULTS and CONCLUSIONS : This study showed that the binder content could differ for the lab application and the machine application in the same setting. Based on the wet-track abrasion test result, the binder contents of the machine application exceeded the binder contents of the lab application by 1-1.5% on the same setting value. Moreover, the maximum dynamic stability value for the machine application showed 1% lower binder contents than the maximum lab-application value. Collectively, the results of the two different tests showed that the different sizes and operating methods of the machine and lab applications could affect the mix designs. Further studies will be performed to verify the bonding strength and monitor the field application.

Design Optimization of a Fan-Shaped Film-Cooling Hole Using a Radial Basis Neural Network Technique (홴형상 막냉각홀의 신경회로망 기법을 이용한 최적설계)

  • Lee, Ki-Don;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.4
    • /
    • pp.44-53
    • /
    • 2009
  • Numerical design optimization of a fan-shaped hole for film-cooling has been carried out to improve film-cooling effectiveness by combining a three-dimensional Reynolds-averaged Navier-Stokes analysis with the radial basis neural network method, a well known surrogate modeling technique for optimization. The injection angle of hole, lateral expansion angle of hole and ratio of length-to-diameter of the hole are chosen as design variables and spatially averaged film-cooling effectiveness is considered as an objective function which is to be maximized. Twenty training points are obtained by Latin Hypercube sampling for three design variables. Sequential quadratic programming is used to search for the optimal point from the constructed surrogate. The film-cooling effectiveness has been successfully improved by the optimization with increased value of all design variables as compared to the reference geometry.

An Experimental Study of Nano PM Emission Characteristics of Commercial Diesel Engine with Urea-SCR System to Meet EURO-IV (상용디젤엔진의 EURO-IV 배기규제 대응을 위한 Urea-SCR 시스템의 나노입자 배출특성에 관한 실험적 연구)

  • Lee, Chun-Hwan;Cho, Taik-Dong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.6
    • /
    • pp.128-136
    • /
    • 2007
  • It is well known that two representative methods satisfy EURO-IV regulation from EURO-III. The first method is to achieve the regulation through the reduction of NOx in an engine by utilizing relatively high EGR rate and the elimination of subsequently increased PM by DPF. However, it results in the deterioration of fuel economy due to relatively high EGR rate. The second is to use the high combustion strategy to reduce PM emission by high oxidation rate and trap the high NOx emissions with DeNOx catalysts such as Urea-SCR. While it has good fuel economy relative to the first method mentioned above, its infrastructure is demanded. In this paper, the number distribution of nano PM has been evaluated by Electrical Low Pressure Impactor(ELPI) and CPC in case of Urea-SCR system in second method. From the results, the particle number was increased slightly in proportion to the amount of urea injection on Fine Particle Region, whether AOC is used or not. Especially, in case of different urea injection pressure, the trends of increasing was distinguished from low and high injection pressure. As low injection pressure, the particle number was increased largely in accordance with the amount of injected urea solution on Fine Particle Region. But Nano Particle Region was not. The other side, in case of high pressure, increasing rate of particle number was larger than low pressure injection on Nano Particle Region. From the results, the reason of particle number increase due to urea injection is supposed that new products are composited from HCNO, sulfate, NH3 on urea decomposition process.