• 제목/요약/키워드: Injection Molding Process

검색결과 903건 처리시간 0.023초

유리섬유로 강화된 폴리카보네이트의 기계적 물성예측 및 사출성형을 통한 휨의 평가 (Prediction of Mechanical Property of Glass Fiber Reinforced Polycarbonate and Evaluation of Warpage through Injection Molding)

  • 문다미;최태균;류민영
    • 폴리머
    • /
    • 제38권6호
    • /
    • pp.708-713
    • /
    • 2014
  • 대부분의 플라스틱 제품은 사출성형을 통해 생산된다. 사출성형에서 성형수축은 피할 수 없으며 이는 제품에 휨이나 뒤틀림을 유발하여 제품의 치수정밀도를 떨어뜨리는 요인으로 작용한다. 사출성형 시 발생하는 휨이나 뒤틀림은 성형조건이나 제품의 형상에도 영향을 받지만 수지의 물성에 따라서도 다양하게 나타난다. 본 연구에서는 제품의 휨을 제어하기 위해 폴리카보네이트를 유리섬유로 보강하여 물성을 예측하였으며, 이를 이용하여 사출성형해석을 실시하였다. 사출성형해석을 통해 유리섬유로 보강된 수지에서 제품의 휨이 감소하는 것을 확인할 수 있었다. 본 연구방법의 타당성과 신뢰성을 검증하기 위하여 사출실험을 실시하여 수지의 물성에 따른 휨 값을 분석하였으며 해석과 실험에서 유사한 경향의 휨이 발생하는 것을 관찰할 수 있었다. 결론적으로 본 연구에서 수행한 바와 같이 해석 프로그램을 통해 수지의 물성을 설계하고 이를 통한 휨의 제어가 가능함을 확인할 수 있었다.

사출성형 해석과 선호함수법에 기초한 자동차 TCU 커넥터 커버의 금형 레이아웃 및 보압의 최적 설계 (Optimal Design of Mold Layout and Packing Pressure for Automobile TCU Connector Cover Based on Injection Molding Analysis and Desirability Function Method)

  • 박종천;유만준
    • 한국기계가공학회지
    • /
    • 제19권9호
    • /
    • pp.1-8
    • /
    • 2020
  • In this study, the optimal design of the multi-cavity mold layout and packing pressure for the automobile TCU connector cover is determined based on the injection molding analysis and the desirability function method for multi-characteristic optimization. The design characteristics to be optimized are the warpage and sink marks of the product, the scrap of the feed system, and the clamping force. The optimal design is determined by performing injection molding analysis and desirability analysis for design alternatives defined by a complete combination of five mold layouts and six-level packing pressure. The optimal design shows that the desirability values for individual characteristics are quite high and balanced, and the resulting values of individual characteristics are satisfactorily low.

다구찌의 강건설계 기법을 이용한 사출 성형품의 싱크 마크를 최소화하기 위한 사출성형 조건의 최적화 (Optimization of injection molding to minimize sink index with Taguchi's Robust Design technique)

  • 권윤숙;정영득
    • Design & Manufacturing
    • /
    • 제1권1호
    • /
    • pp.17-21
    • /
    • 2007
  • In the manufacture and processing of large plastic materials, product quality is tested and verified through several techniques such as injection processing, residual stress through injection molding and shrinkage. With regards to the injection molding process, common problems such as inconsistent density is seen when different points of the product are discovered to have varying thickness levels. Sink marks in product are then evident. This occurs when there is poor molding conditions caused about by poor runner and packaging systems incorporated into the process. We designed the runner system which is possible balanced filling to cavities using CAE program $Moldflow^{TM}$ and then obtained optimal processing conditions by Taguchi's Robust Design technique.

  • PDF

사출압축성형을 통한 광디스크 기판 성형 및 복굴절의 측정 (Measurement of Birefringence Distribution in Optical Disk Substrates Fabricated by Injection-Compression Molding)

  • 김종성
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 춘계학술대회논문집
    • /
    • pp.218-224
    • /
    • 1999
  • It is necessary to improve mechanical and optical properties in the optical disk substrates as the information storage devices with high storage density using short wavelength laser are being developed. Injection compression molding is regarded as the most suitable process to manufacture optical disk substrates with high is regarded as the most suitable process to manufacture optical disk substrates with high dimensional accuracy low residual stresses and superb optical properties In the present study polycarbonate optical disk substrates were fabricated by injection compression molding and the birefringence regarded as one of the most important optical properties for optical disk is measured. The effects of various processing conditions upon the development of birefringence distribution were examined experimentally. It was found that the value of the birefringence distribution were very sensitive to the mold wall temperature history and the variance of the birefringence distribution in the radial direction was affected by the level of the packing and the compression pressure.

  • PDF

Computer Aided Engineering Design of Power Injection Molding Process for Dental Scaler Top Mold Design

  • Hwang, C.J.;Ko, Y.B.;Park, H.P.;Chung, S.T.;Rhee, B.O.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.497-498
    • /
    • 2006
  • Powder Injection Molding (PIM) has recently been recognized as an advanced manufacturing technology for low-cost mass production of metal or ceramic parts of complicated geometry. With this regards, design technology of dental scaler tip PIM mold, which has complex shape, with the help of computer-aided analysis for powder injection molding process was developed. Compter aided analysis results, such as filling pattern, weldline formation, and air vent position prediction were investigated and eventually showed good agreements with experimental results.

  • PDF

사출성형품의 두께변화에 따른 마이크로 패턴의 전사율에 관한 실험적 연구 (An Experimental Study on the Replication Ratio of Micro Patterns considering the Thickness Change of Injection Molded Parts)

  • 정철;김종덕;김종선;윤경환;황철진
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.176-179
    • /
    • 2009
  • Injection molding is one of the most general manufacturing processes of polymers. The deformation of final molded parts occurs because of the change of temperature and pressure during injection molding process. The deformation of injection molded parts depends on many operational conditions, such as, melt temperature, injection speed, mold temperature, packing pressure, and the structure of mold. In the present paper, injection molding experiments were performed to find the process conditions to affect the average shrinkage in thickness direction and the replication ratio of fine patterns on the surface for the final injection-molded LGP samples. As a results, in the cases of PC(Polycarbonate), when the melt temperature was under $285^{\circ}C$, both average shrinkage and replication ratios were mainly influenced by packing pressure. However, the replication ratio was more influenced by melt temperature than packing pressure for the cases of higher melt temperature.

  • PDF

사출온도조건이 에프세타 렌즈의 표면조도와 표면형상에 미치는 영향에 관한 연구 (Effect of Injection Temperature Condition on Root Mean Square and Peak-to-Valley of F-theta Lens)

  • 박용우;문성민;류성기
    • 한국기계가공학회지
    • /
    • 제20권6호
    • /
    • pp.114-120
    • /
    • 2021
  • This study is focused on the root mean square and peak-to-valley based on the injection conditions of the f-theta lens, one of the main components of laser printers and laser scanning systems. The f-theta lens of an aspherical plastic lens requires ultra-preaction. Injection molding is typically used for the mass production of aspherical plastic lenses. In the injection-molding method, the resin in the lens shape is filled with the resin after melting the plastic pellets at a constant temperature and then cooled. It is necessary to maintain a uniform injection molding system to produce high-quality lenses. These injection-molding systems are influenced by different factors, such as pressure, speed, temperature, mold, and cooling. It is possible to obtain a lens that exhibits the optical characteristics required to achieve harmony. We investigated the root mean square and peak-to-valley caused by variations in temperature, a critical parameter in the melting and cooling of plastic resins generated inside and outside the injection mold.

후육 벽 PET 용기에 대한 사출 블로우 성형의 유한요소해석 (Finite element analysis of a injection blow molding process for the thick-walled PET bottle)

  • 홍석관;송민재;고영배;차백순
    • Design & Manufacturing
    • /
    • 제12권3호
    • /
    • pp.5-12
    • /
    • 2018
  • Plastic containers which provides the opportunity to reduce transportation costs are lighter and less brittle than glass containers. As a results, efforts to replace glass with plastic are ongoing. The blow molding method is a typical approach in producing plastic containers. Single-stage injection blow molding (ISBM) is one of the blow molding methods. However, the difficulty in controlling the temperature during the injection molding process is considered its main disadvantage. In this study, ISBM process analysis of relatively thick walled containers such as cosmetic containers is carried out. The initial temperature distribution of the preform is deemed to be the most influential factor in the accuracy of blow molding for the thick vessel. In order to accurately predict this, all heat transfer processes of the preform are considered. The validity of this analytical procedure is verified by comparing the cross-sectional thickness with the actual product. Finally, the validated analytical method is used to evaluate the factors affecting the thickness of the final molded part. The ISBM analysis technique for thick walled vessels developed through this study can be used as an effective predictor for preform design and blow process.

사출 성형공정 압력에 따른 PA6/GF 복합재료의 물리적 특성 및 성능 예측 시뮬레이션에 관한 연구 (A Study on the Mechanical Properties and Performance Prediction Simulation of PA6/GF Composite Materials with Injection Molding Pressure)

  • 유성훈;김민성;윤현성;박종수;전성민;심지현
    • 한국염색가공학회지
    • /
    • 제34권1호
    • /
    • pp.46-57
    • /
    • 2022
  • In this study, the relationship between fiber orientation and mechanical properties with the injection pressure of polyamide-6/glass fiber composite materials manufactured by the injection molding process was investigated. Also, an actual experimental data and finite element model-based simulation data were analyzed. Specimens were manufactured through the injection molding process setting the injection pressure differently to 700, 800, 900, and 1000 bar, respectively. A morphological analysis and orientation of the PA6/GF composite material were observed using Optical microscope. Through tensile and flexural strength tests, the mechanical properties of the PA6/GF composite materials with the injection pressure were studied. As a result, it was confirmed that the mechanical properties were the superior under the injection pressure of 900 bar molding conditions. In addition, the mechanical properties of the actually manufactured specimen (PA6/GF) and virtual engineering S/W((Digimat, Abaqus) were used to compare and analyze the analysis results for the mechanical properties, and based on the reliable DB, the physical properties of the PA6/GF composite characteristics were studied.

An Interface Module for Dehumidify Dryer in a Injection Molding Smart Factory System

  • Kang, Un-Gu
    • 한국컴퓨터정보학회논문지
    • /
    • 제23권11호
    • /
    • pp.123-128
    • /
    • 2018
  • When the injection molding system molds some plastic products, defective product rate will be increased if plastic materials have some excessive moisture content. Therefore, it is very important to control the dehumidification and drying of plastic material. Since the moisture content of the plastic material may change from time to time depending on the material and the molding process, it is necessary to observe the change in real time and maintain a constant moisture content. To solve these problems, I proposed a smart factory system model for plastic molding in this paper. In addition, I designed the interface module to be installed in the dehumidifying dryer which is the core of this process. In addition to this, performance tests were conducted to check the effectiveness and the results were verified as valid.