• Title/Summary/Keyword: Initial pressure method

Search Result 533, Processing Time 0.029 seconds

On wave propagation of football ball in the free kick and the factors affecting it

  • Xumao Cheng;Ying Wu
    • Steel and Composite Structures
    • /
    • v.46 no.5
    • /
    • pp.669-672
    • /
    • 2023
  • In this research, the researcher has examined the factors affecting the movement of the soccer ball and will show that the effects such as air resistance, altitude above sea level, wind, air pressure, air temperature, air humidity, rotation of the earth, changes in the earth's gravitational acceleration in different areas. It, the geographical length and latitude of the launch point, the change of gravitational acceleration with height, the change of pressure with height, the change of temperature with height and also the initial spin (Magnus effect) affect the movement of projectiles (especially soccer ball). We modelled th ball based on shell element and derive the motion equations by energy method. Finally, using numerical solution, the wave of the ball is studied. The influences of various parameters are investigated on wave propagation of the ball. Therefore, in short, it can be said that the main factors that play a major role in the lateral deviation of the hit ball are the initial spin of the ball and the wind.

A Study on the Evaluation of Liquefaction of Sandy Soils by the Cyclic Triaxial Compression Test (反復三軸壓縮試驗에 의한 砂質土의 液狀化 評價에 관한 硏究)

  • Koh, Jae-Man;Doh, Duk-Hyun
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.33 no.3
    • /
    • pp.51-62
    • /
    • 1991
  • A comprehensive laboratory investigation of the liquefaction characteristics of Jumunjin standard sand. Seoul sand and Hongsung sand was peformed by the undrained cyclic triaxial compression test under different relative densities, confining pressures and cyclic deviator stresses. The results obtained are as follows ; 1. Liquefaction potential was dominated by the stress ratio at a given number of cycle. That is, the number of cycle required to cause initial liquefaction became samller as the stress ratio increased. 2. Liquefaction potential of a sand was infliuenced by initial relative density or void ratio. Under a given relative density. liquefaction potential of Jumunjin standard sand and Seoul sand was smaller than that of Hongsung sand. 3. The pore pressure ratio of Hongsung sand was the smallest three under a given relative density and stress ratio, and it showed higher value when the cyclic stress and the shear strain were high. 4. An excessive pore pressure ratio not found when initial shear was smaller than 0.01%, and the pore pressure ratio started to increase when initial shear became greater than 0.01%. 5. Soil texture is an important factor to cause liquefaction, and liquefaction potential decreased a the mean grain size decreased. however the sand having fine grain such as Hongsung sand showed somewhat higher liquefaction potential. 6. Based on the analysis of the specimens whose number of the cycles to cause liquefaction was 8~12, it was found that the relationship between density and stress ratio was linear. The curves for Hongsung sand was steeper than the other. 7. From the above results and the method suggested by Seed-Idriss, it may be considered that the damages by Hongsung earthquake was not directly caused by liquefaction.

  • PDF

A Study on the Spray Characteristics of CRDI System with Ambient Pressure (분위기압력에 따른 CRDI 분사계의 분무특성 연구)

  • Kim, Sang-Am;Wang, Woo-Gyeong
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.21-28
    • /
    • 2014
  • The studies of the spray characteristics for a CRDI engine had been advancing by many researchers, because the performance and exhaust emission were significantly affected with the spray characteristics. But most experiments of the studies would be done at low ambient pressure conditions under 2MPa. In this study, injection rates were measured with Zeuch's method at various ambient pressures to 5MPa and a constant injection pressure of 130MPa. On the same conditions, non-evaporating spray images were taken with a high speed camera and analyzed carefully with Adobe Photoshop CS3. Macroscopic spray characteristics and breakup processes in the spray could be found from the examined and analyzed data. The initial injection rate, penetration, angle, velocity and breakup of the spray were practically affected with a variation of the ambient pressure, but the injection start time and injection period were scarcely affected. As the ambient pressure was higher, the breakup of a high density droplet region in the spray was happened slowly and the main position of breakup was shifted from a front of the spray to a upstream around a nozzle. The results and techniques of spray visualization and injection rate measurement in this study would be practically effective to study a high pressure diesel spray for a CRDI.

Experimental Investigation on Finasteride Microparticles Formation via Gas Antisolvent Process

  • Najafi, Mohammad;Esfandiari, Nadia;Honarvar, Bizhan;Aboosadi, Zahra Arab
    • Korean Chemical Engineering Research
    • /
    • v.59 no.3
    • /
    • pp.455-466
    • /
    • 2021
  • Micro and nanoparticles of Finasteride were prepared by gas-antisolvent method. The influence of process parameters such as pressure (100, 130 and 160 bar), temperature (308, 318 and 328 K) and solute concentrations (10, 25 and 40 mg/ml) on mean particle size was studied by Box-Behnken design. As ANOVA results indicated, the highest influence in production of smaller particles was attributed to the pressure. Optimum condition leading to the smallest particle size was as follows: initial solute concentration, 10 mg/ml; temperature, 308 K and pressure, 160 bar. The particles were evaluated with FTIR, SEM, DLS, XRD as well as DSC. The analyses revealed a size decrease in the precipitated Finasteride particles (232.4 nm, on mean) via gas-antisolvent method, as compared to the original particles (55.6 ㎛).

Self Ignition Phenomena of High Pressure Hydrogen Released into Tube with Diaphragm Rupture Conditions (튜브 내 누출되는 고압수소의 격막파열조건에 따른 자발점화 현상)

  • Lim, Han Seuk;Lee, Sang Yoon;Lee, Hyoung Jin;Jeung, In-Seuck
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.215-218
    • /
    • 2014
  • High combustion efficiency of hydrogen could make it an ideal source of green energy in the future. At this time, high pressure vessel is the most reasonable method of storing hydrogen. However, such a high pressurized vessel could pose a critical threat if ruptured. For this reason, it is important to understand the mechanism of hydrogen's self-ignition when a high-pressure hydrogen released into air. This paper presents several visualization images as experimental results using high-speed camera. From the visualization images, the ignition is initiated near rupture disk immediately after failure of disk. And the initial ignition and flame is stronger as a rupture pressure increases. However, this ignition region do not affect the general self-ignition mechanism when a high-pressure hydrogen is released into air through tue after failure of disk.

  • PDF

Heat/Mass Transfer for Impingement/Effusion Cooling System with Circular Guide (원형가이드 설치에 따른 충돌제트/유출냉각에서 열/물질전달 특성)

  • Hong, Sung-Kook;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.12 s.255
    • /
    • pp.1147-1154
    • /
    • 2006
  • An experimental investigation was conducted to enhance the heat/mass transfer for impingement/effusion cooling system when the initial crossflow was formed. For the improvement of heat transfer, the circular guide is installed on the injection hole. At the fixed jet Reynolds number of 10,000, the measurements were carried out for blowing ratios ranging from 0.5 to 1.5. The local heat/mass transfer coefficients on the effusion plate are measured using a naphthalene sublimation method. The result presents that the circular guide protects the injected jet from the initial crossflow, increasing the heat/mass transfer. The heat transfer of stagnation region is hardly changed regardless of the blowing ratio. The secondary peak is obviously formed by flow transition to turbulent flow. At high blowing ratio of 1.5, the circular guide produces $26{\sim}30%$ augmentation on the averaged heat/mass transfer while the case without circular guide leads to the low and non-uniform heat/mass transfer. With the increased heat/mass transfer, the installation of circular guide is accompanied by the increase of pressure loss in the channel. However, the pressure drop caused by the circular guide is lower than that for other cooling technique with the circular pin fin.

Accurate Prediction Method of Breakdown Voltage in Air at Atmospheric Pressure

  • Kim, Nam-Kyung;Lee, Se-Hee;Georghiou, G.E.;Kim, Dong-Wook;Kim, Dong-Hun
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.97-102
    • /
    • 2012
  • To predict accurately the breakdown voltage in air at atmospheric pressure, a fully coupled finite element analysis combining the hydrodynamic diffusion-drift equations with Poisson's equation is proposed in the current paper. As three kinds of charged transport particles are nonlinearly coupled with spatial electric fields, the equations should be solved by an iterative numerical scheme, in which secondary effects, such as photoemission and photoionization, are considered. The proposed method has been successfully applied to evaluate the breakdown voltage in circular parallel-plane electrodes. Its validity has been proved through the comparison of the predicted and experimental results. The effects of numerical conditions of the initial charge, photoemission, and background ionization on the discharge phenomena are quantitatively assessed through Taguchi's design of experiment method.

Design of Porthole Extrusion Die for Improving the Welding Pressure in Welding Chamber by using the FE Analysis and Taguchi Method (유한요소해석 및 다구찌법을 이용한 접합실 내 접합압력 향상을 위한 포트홀 압출 금형 설계)

  • Lee, S.Y.;Lee, I.K.;Jeong, M.S.;Ko, D.C.;Lee, S.K.
    • Transactions of Materials Processing
    • /
    • v.28 no.6
    • /
    • pp.347-353
    • /
    • 2019
  • The porthole extrusion process is a classic metal forming process to produce complex cross-section shaped aluminum profile. It is very difficult to design porthole die and extrusion process because of the complex shape of extrusion die and internal metal flow. The main variables in this process are ram speed, initial billet and tool temperature, and die shape. In general, the metal flow of porthole extrusion process can be divided into two steps. During the first step, the billet is divided into several parts in the porthole die bridge. During the second step, the divided billets are welded in the welding chamber. In the welding chamber, the level of welding pressure is very important for the quality of the final product. The purpose of this study is to increase the welding pressure in the welding chamber by using a two stage welding chamber. The porthole extrusion die was designed by using the Taguchi method with orthogonal array. The effectiveness of the optimized porthole die was verified by using the finite element analysis.

Three-dimensional limit analysis of seismic stability of tunnel faces with quasi-static method

  • Zhang, B.;Wang, X.;Zhang, J.S.;Meng, F.
    • Geomechanics and Engineering
    • /
    • v.13 no.2
    • /
    • pp.301-318
    • /
    • 2017
  • Based on the existing research results, a three-dimensional failure mechanism of tunnel face was constructed. The dynamic seismic effect was taken into account on the basis of quasi-static method, and the nonlinear Mohr-Coulomb failure criterion was introduced into the limit analysis by using the tangent technique. The collapse pressure along with the failure scope of tunnel face was obtained through nonlinear limit analysis. Results show that nonlinear coefficient and initial cohesion have a significant impact on the collapse pressure and failure zone. However, horizontal seismic coefficient and vertical seismic proportional coefficient merely affect the collapse pressure and the location of failure surface. And their influences on the volume and height of failure mechanism are not obvious. By virtue of reliability theory, the influences of horizontal and vertical seismic forces on supporting pressure were discussed. Meanwhile, safety factors and supporting pressures with respect to 3 different safety levels are also obtained, which may provide references to seismic design of tunnels.

A Study on Landfill Leachate Treatment by Reduced Pressure Evaporation. (감압증발법을 이용한 매립장 침출수 처리에 관한 연구)

  • 문추연;은종극;이태호
    • Journal of environmental and Sanitary engineering
    • /
    • v.12 no.3
    • /
    • pp.73-79
    • /
    • 1997
  • This research was intended as an investigation of applying Reduced Pressure Evaporation as efficient treatment method for landfill leachate. According to the variance of time, temperature, pressure and pH in experiments, the properties of leachate treatment are follows. The removal efficiencies of COD, NH$_{3}$-N, TOC, Conductivity and SS on the basis of reaction time was 96.4%-97.5%, -1.4%-53.7%, 81.7%-89.0%, 92.0%-95.3% and 99.86%-99.97%, respectively. When the pH of Influent was 7.5, the pH of effluent was increased to 10-11 with time elapse. It is concluded that the orgin of pH increase may be ammonia. When the properties of concentrate were investigated at the concentration ratio 90%(V/V), concentration difficiency represented in the ratio of experimental value/calculated value had following orders ; COD>TOC>NH$_{3}$-N>Conductivity>SS. Concentrate had good precipitation because of additive thermal treatment in the process. When evaporation experiments with pH adjustment of 4.0, 6.0, 7.5, 9.0 and 10.0 were performed ; Acidic evaporation experiments(pH 4.0, 6.0) showed low removal efficiency(81.6, 87.6%) of COD and high removal efficiency (97.5%. 84.6%) of NH$_{3}$-N at initial evaporation. Basic evaporation(pH 9.0, 10.0) showed high removal efficiency (97.2%, 98.9%) of COD and very low removal efficiency (-7.4%, -27.2%) of NH$_{3}$-N at initial evaporation.

  • PDF