Browse > Article
http://dx.doi.org/10.9713/kcer.2021.59.3.455

Experimental Investigation on Finasteride Microparticles Formation via Gas Antisolvent Process  

Najafi, Mohammad (Department of Chemical Engineering, Marvdasht Branch, Islamic Azad University)
Esfandiari, Nadia (Department of Chemical Engineering, Marvdasht Branch, Islamic Azad University)
Honarvar, Bizhan (Department of Chemical Engineering, Marvdasht Branch, Islamic Azad University)
Aboosadi, Zahra Arab (Department of Chemical Engineering, Marvdasht Branch, Islamic Azad University)
Publication Information
Korean Chemical Engineering Research / v.59, no.3, 2021 , pp. 455-466 More about this Journal
Abstract
Micro and nanoparticles of Finasteride were prepared by gas-antisolvent method. The influence of process parameters such as pressure (100, 130 and 160 bar), temperature (308, 318 and 328 K) and solute concentrations (10, 25 and 40 mg/ml) on mean particle size was studied by Box-Behnken design. As ANOVA results indicated, the highest influence in production of smaller particles was attributed to the pressure. Optimum condition leading to the smallest particle size was as follows: initial solute concentration, 10 mg/ml; temperature, 308 K and pressure, 160 bar. The particles were evaluated with FTIR, SEM, DLS, XRD as well as DSC. The analyses revealed a size decrease in the precipitated Finasteride particles (232.4 nm, on mean) via gas-antisolvent method, as compared to the original particles (55.6 ㎛).
Keywords
Response surface methodology; Supercritical fluid technology; Dimethyl sulfoxide; Finasteride; Nanoparticle;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Mondal, M., Ghosh, A., Gayen, K., Halder, G. and Tiwari, O., "Carbon Dioxide Bio-fixation by Chlorella sp. BTA 9031 Towards Biomass and Lipid Production: Optimization Using Central Composite Design Approach," J. CO2 Utilization, 22, 317-329(2017).   DOI
2 Chen, K., Zhang, X., Pan, J., Zhang, W. and Yin, W., "Gas Antisolvent Precipitation of Ginkgo Ginkgolides with Supercritical CO2", Powder Technol., 152(1-3), 127-132(2005).   DOI
3 Thakur, R. and Gupta, R. B., "Rapid Expansion of Supercritical Solution with Solid Cosolvent (RESS-SC) Process: Formation of Griseofulvin Nanoparticles," Ind. Eng. Chem. Research, 44(19), 7380-7387(2005).   DOI
4 Sharma, D., Soni, M., Kumar, S. and Gupta, G., "Solubility Enhancement-eminent Role in Poorly Soluble Drugs," Res. J. Pharm. and Technol., 2(2), 220-224(2009).
5 Ridhurkar, D. N., Ansari, K. A., Kumar, D., Kaul, N. S., Krishnamurthy, T., Dhawan, S. and Pillai, R., "Inclusion Complex of Aprepitant with Cyclodextrin: Evaluation of Physico-chemical and Pharmacokinetic Properties," Drug Dev. Ind. Pharm., 39(11), 1783-1792(2013).   DOI
6 Nguyen, T. T. L., Anton, N. and Vandamme, T. F., "Oral Pellets Loaded with Nanoemulsions," Nanostructures for Oral Medicine, 203-230(2017).
7 Ku, M. S. and Dulin, W., "A Biopharmaceutical Classification-based Right-First-Time Formulation Approach to Reduce Human Pharmacokinetic Variability and Project Cycle Time from FirstIn-Human to Clinical Proof-of-Concept," Pharm.Dev. Tech., 17(3), 285-302(2012).   DOI
8 Krishnaiah, Y. S., "Pharmaceutical Technologies for Enhancing Oral Bioavailability of Poorly Soluble Drugs," J. Bioequiv. Availab., 2(2), 28-36(2010).   DOI
9 Sodeifian, G., Sajadian, S. A. and Daneshyan, S., "Preparation of Aprepitant Nanoparticles (efficient drug for coping with the effects of cancer treatment) by Rapid Expansion of Supercritical Solution with Solid Cosolvent (RESS-SC)," J. Supercri. Fluids, 140, 72-84(2018).   DOI
10 Keshavarz, A., Karimi-Sabet, J., Fattahi, A., Golzary, A., RafieeTehrani, M. and Dorkoosh, F. A., "Preparation and Characterization of Raloxifene Nanoparticles Using Rapid Expansion of Supercritical Solution (RESS)," J. Supercri. Fluids, 63, 169-179(2012).   DOI
11 Jafari, D., Yarnezhad, I., Nowee, S. M. and Baghban, S. H. N., "Gas-antisolvent (GAS) Crystallization of Aspirin Using Supercritical Carbon Dioxide: Experimental Study and Characterization," Ind. Eng. Chem. Res., 54(14), 3685-3696(2015).   DOI
12 Anuar, N., Mohd Adnan, A. F., Saat, N., Aziz, N. and Mat Taha, R., "Optimization of Extraction Parameters by Using Response Surface Methodology, Purification, and Identification of Anthocyanin Pigments in Melastoma Malabathricum Fruit," Sc. World J., 2013, 1-10(2013).
13 Nam, S.-N., Cho, H., Han, J., Her, N. and Yoon, J., "Photocatalytic Degradation of Acesulfame K: Optimization Using the Box-Behnken Design (BBD)," Proc. Saf. Environ. Prot., 113, 10-21(2018).   DOI
14 Joglekar, A. and May, A., "Product Excellence Through Design of Experiments," Cereal Foods World, 32(12), 857(1987).
15 Esfandiari, N. and Ghoreishi, S. M., "Ampicillin Nanoparticles Production via Supercritical CO2 Gas Antisolvent Process," AAPS Pharm. Sci. Tech., 16(6), 1263-1269(2015).   DOI
16 Esfandiari, N. and Ghoreishi, S. M., "Kinetics Modeling of Ampicillin Nanoparticles Synthesis via Supercritical Gas Antisolvent Process," J. Supercri. Fluids, 81, 119-127(2013).   DOI
17 Paisana, M. C., Mullers, K. C., Wahl, M. A. and Pinto, J. F., "Production and Stabilization of Olanzapine Nanoparticles by Rapid Expansion of Supercritical Solutions (RESS)," J. Supercri. Fluids, 109, 124-133(2016).   DOI
18 Bakhbakhi, Y., Charpentier, P. A. and Rohani, S., "Experimental study of the GAS Process for Producing Microparticles of Beclomethasone-17, 21-dipropionate Suitable for Pulmonary Delivery," Int. J. Pharm., 309(1-2), 71-80(2006).   DOI
19 Fagir, W., Hathout, R. M., Sammour, O. A. and ElShafeey, A. H., "Self-microemulsifying Systems of Finasteride with Enhanced Oral Bioavailability: Multivariate Statistical Evaluation, Characterization, Spray-drying and in vivo Studies in Human Volunteers," Nanomedicine, 10(22), 3373-3389(2015).   DOI
20 Ahmed, T. A., "Preparation of Finasteride Capsules-loaded Drug Nanoparticles: Formulation, Optimization, in vitro, and Pharmacokinetic Evaluation," Int. J. Nanomedicine, 11, 515(2016).   DOI
21 Ciou, J. L. and Su, C. S., "Measurement of Solid Solubilities of Diuron in Supercritical Carbon Dioxide and Analysis of Recrystallization by Using the Rapid Expansion of Supercritical Solutions Process," J. Supercri. Fluids, 107, 753-759(2016).   DOI
22 Cui, F., Li, Y., Xu, Z., Xu, H., Sun, K. and Tao, W., "Optimization of the Medium Composition for Production of Mycelial Biomass and Exo-polymer by Grifola Frondosa GF9801 Using Response Surface Methodology," Bioresour. Technol., 97(10), 1209-1216 (2006).   DOI
23 Sodeifian, G., Ardestani, N. S., Sajadian, S. A. and Panah, H. S., "Experimental Measurements and Thermodynamic Modeling of Coumarin-7 Solid Solubility in Supercritical Carbon Dioxide: Production of Nanoparticles via RESS Method," Fluid Phase Equilib., 483, 122-143(2019).   DOI
24 Kim, S.-J., Lee, B.-M., Lee, B.-C., Kim, H.-S., Kim, H. and Lee, Y.-W., "Recrystallization of Cyclotetramethylenetetranitramine (HMX) Using Gas Anti-solvent (GAS) Process," J. Supercri. Fluids, 59, 108-116(2011).   DOI
25 Kim, S., Lee, S.J., Seo, B., Lee, Y.-W. and Lee, J. M., "Optimal Design of a Gas Antisolvent Recrystallization Process of Cyclotetramethylenetetranitramine (HMX) with Particle Size Distribution Model," Ind. Eng. Chem. Res., 54(44), 11087-11096(2015).   DOI
26 Dittanet, P., Phothipanyakun, S. and Charoenchaitrakool, M., "Co-precipitation of Mefenamic Acid-polyvinylpyrrolidone K30 Composites Using Gas Anti-Solvent," J. Taiwan Ins. Chem. Eng., 63, 17-24(2016).   DOI
27 Fahim, T., Zaidul, I., Bakar, M.A., Salim, U., Awang, M., Sahena, F., Jalal, K., Sharif, K. and Sohrab, M., "Particle Formation and Micronization Using Non-conventional Techniques-review," Chem. Eng. Process. Process Intensification, 86, 47-52(2014).   DOI
28 Ahmed, T. A. and Al-Abd, A. M., "Effect of Finasteride Particle Size Reduction on Its Pharmacokinetic, Tissue Distribution and Cellular Permeation," Drug Del., 25(1), 555-563(2018).   DOI
29 Najafi, M., Esfandiari, N., Honarvar, B. and Arab Aboosadi, Z., "Thermodynamic Modeling of the Gas-Antisolvent (GAS) Process for Precipitation of Finasteride," J. Chem. Pet. Eng., 54, 297-309(2020).
30 Almeida, H. M. and Marques, H. M. C., "Physicochemical Characterization of Finasteride: PEG 6000 and Finasteride: Kollidon K25 Solid Dispersions, and Finasteride: β-cyclodextrin Inclusion Complexes," J. Inclusion Phenom. Macrocyclic Chem., 70(3-4), 397-406(2011).   DOI
31 Cheng, S. H., Yang, F. C., Yang, Y. H., Hu, C. C. and Chang, W. T., "Measurements and Modeling of the Solubility of Ergosterol in Supercritical Carbon Dioxide," J. Taiwan Ins. Chem. Eng., 44(1), 19-26(2013).   DOI
32 Khadka, P., Ro, J., Kim, H., Kim, I., Kim, J. T., Kim, H., Cho, J. M., Yun, G. and Lee, J., "Pharmaceutical Particle Technologies: An Approach to Improve Drug Solubility, Dissolution and Bioavailability," Asian J. Pharm. Sci., 9(6), 304-316(2014).   DOI
33 Kumar, A., Sahoo, S. K., Padhee, K., Kochar, P., Sathapathy, A. and Pathak, N., "Review on Solubility Enhancement Techniques for Hydrophobic Drugs," Pharmacie Globale, 3(3), 1-7(2011).
34 Nokhodchi, A., Javadzadeh, Y., Siahi-Shadbad, M. R. and Barzegar-Jalali, M., "The Effect of Type and Concentration of Vehicles on the Dissolution Rate of a Poorly Soluble Drug (indomethacin) from Liquisolid Compacts," J. Pharm. Sci., 8(1), 18-25(2005).
35 Esfandiari, N., "Production of Micro and Nano Particles of Pharmaceutical by Supercritical Carbon Dioxide," J. Supercri. Fluids, 100, 129-141(2015).   DOI
36 Foster, N. R., Kurniawansyah, F., Tandya, A., Delgado, C. and Mammucari, R., "Particle Processing by Dense Gas Antisolvent Precipitation: ARISE Scale-up," Chem. Eng. J., 308, 535-543(2017).   DOI
37 Pessoa, A. S., Aguiar, G. P. S., Oliveira, J. V., Bortoluzzi, A. J., Paulino, A. and Lanza, M., "Precipitation of Resveratrol-isoniazid and Resveratrol-nicotinamide Cocrystals by Gas Antisolvent," J. Supercri. Fluids, 145, 93-102(2019).   DOI
38 Wichianphong, N. and Charoenchaitrakool, M., "Application of Box-Behnken Design for Processing of Mefenamic Acid-paracetamol Cocrystals Using Gas Anti-solvent (GAS) Process," J. CO2 Uti., 26, 212-220(2018).   DOI
39 Lorincz, L., Bansaghi, G., Zsemberi, M., de Simon Brezmes, S., Szilagyi, I. M., Madarasz, J., Sohajda, T. and Szekely, E., "Diastereomeric Salt Precipitation Based Resolution of Ibuprofen by Gas Antisolvent Method," J. Supercri. Fluids, 118, 48-53(2016).   DOI
40 Mihalovits, M., Horvath, A., Lorincz, L., Szekely, E. and Kemeny, S., "Model Building on Selectivity of Gas Antisolvent Fractionation Method Using the Solubility Parameter," Period. Polytech. Chem. Eng., 63(2), 294-302(2019).   DOI
41 Kim, H., Kim, J., Cho, J. and Hong, J., "Optimization and Characterization of UV-curable Adhesives for Optical Communications by Response Surface Methodology," Polym. Test., 22(8), 899-906 (2003).   DOI
42 Ameri, A., Sodeifian, G. and Sajadian, S. A., "Lansoprazole Loading of Polymers by Supercritical Carbon Dioxide Impregnation: Impacts of Process Parameters," J. Supercri. Fluids, 104892(2020).
43 Ardestani, N. S., Sodeifian, G. and Sajadian, S. A., "Preparation of Phthalocyanine Green Nano Pigment Using Supercritical CO2 Gas Antisolvent (GAS): Experimental and Modeling," Heliyon, 6(9), e04947(2020).   DOI
44 Sodeifian, G. and Sajadian, S. A., "Utilization of Ultrasonicassisted RESOLV (US-RESOLV) with Polymeric Stabilizers for Production of Amiodarone Hydrochloride Nanoparticles: Optimization of the Process Parameters," Chem. Eng. Res. Des., 142, 268-284(2019).   DOI
45 Hiendrawan, S., Veriansyah, B. and Tjandrawinata, R. R., "Micronization of Fenofibrate by Rapid Expansion of Supercritical Solution," J. Ind. Eng. Chem., 20(1), 54-60(2014).   DOI
46 Sodeifian, G., Sajadian, S. A., Ardestani, N. S. and Razmimanesh, F., "Production of Loratadine Drug Nanoparticles Using Ultrasonic-assisted Rapid Expansion of Supercritical Solution Into Aqueous Solution (US-RESSAS)," J. Supercri. Fluids, 147, 241-253(2019).   DOI
47 Jafari, D., Nowee, S. and Noie, S., "A Kinetic Modeling of Particle Formation by Gas Antisolvent Process: Precipitation of Aspirin," J. Dispersion Sci. Technol., 38(5), 677-685(2017).   DOI
48 Esfandiari, N. and Ghoreishi, S. M., "Synthesis of 5-fluorouracil Nanoparticles via Supercritical Gas Antisolvent Process," J. Supercri. Fluids, 84, 205-210(2013).   DOI
49 Sodeifian, G. and Sajadian, S. A., "Solubility Measurement and Preparation of Nanoparticles of an Anticancer Drug (Letrozole) Using Rapid Expansion of Supercritical Solutions with Solid Cosolvent (RESS-SC)," J. Supercri. Fluids, 133, 239-252(2018).   DOI
50 Park, S.-J. and Yeo, S.-D., "Recrystallization of Caffeine Using Gas Antisolvent Process," J. Supercri. Fluids, 47(1), 85-92(2008).   DOI
51 Yamini, Y., Kalantarian, P., Hojjati, M., Esrafily, A., Moradi, M., Vatanara, A. and Harrian, I., "Solubilities of Flutamide, Dutasteride, and Finasteride as Antiandrogenic Agents, in Supercritical Carbon Dioxide: Measurement and Correlation," J. Chem. Eng. Data, 55(2), 1056-1059(2009).   DOI
52 Yildiz, N., Tuna, S., Doker, O. and Calimli, A., "Micronization of Salicylic Acid and Taxol (paclitaxel) by Rapid Expansion of Supercritical Fluids (RESS)," J. Supercri. Fluids, 41(3), 440-451 (2007).   DOI
53 Liu, J., Zou, M., Piao, H., Liu, Y., Tang, B., Gao, Y., Ma, N. and Cheng, G., "Characterization and Pharmacokinetic Study of Aprepitant Solid Dispersions with Soluplus®", Molecules, 20(6), 11345-11356(2015).   DOI
54 Humberstone, A. J. and Charman, W. N., "Lipid-based Vehicles for the Oral Delivery of Poorly Water Soluble Drugs," Adv. Drug Delivery Reviews, 25(1), 103-128(1997).   DOI
55 Bolten, D. and Turk, M., "Micronisation of Carbamazepine Through Rapid Expansion of Supercritical Solution (RESS)," J. Supercri. Fluids, 62, 32-40(2012).   DOI
56 Knez, Z. and Weidner, E., "Particles Formation and Particle Design Using Supercritical Fluids," Curr. Opin. Solid State Mater. Sci., 7(4-5), 353-361(2003).   DOI
57 Granato, D. and de Araujo Calado, V. M., "The Use and Importance of Design of Experiments (DOE) in Process Modelling in Food Science and Technology," Math. Statistical Methods Food Sci. Technol., 1, 1-18(2014).
58 Ulker, Z. and Erkey, C., "An Advantageous Technique to Load Drugs Into Aerogels: Gas Antisolvent Crystallization Inside the Pores," J. Supercri. Fluids, 120, 310-319(2017).   DOI
59 Zodge, A., Korosi, M., Madarasz, J., Szilagyi, I. M., Varga, E. and Szekely, E., "Gas Antisolvent Fractionation: A New Approach for the Optical Resolution of 4-chloromandelic Acid," Period. Polytech. Chem. Eng., 63(2), 303-311(2019).   DOI
60 Gil-Ramirez, A. and Rodriguez-Meizoso, I., "Purification of Natural Products by Selective Precipitation Using Supercritical/Gas Antisolvent Techniques (SAS/GAS)," Sep. Purif. Rev., 1-21(2019).
61 Tafreshi, N., Sharifnia, S. and Dehaghi, S. M., "Box-Behnken Experimental Design for Optimization of Ammonia Photocatalytic Degradation by ZnO/Oak Charcoal Composite," Process Saf. Environ. Prot., 106, 203-210(2017).   DOI