• 제목/요약/키워드: Initial Displacement

Search Result 624, Processing Time 0.028 seconds

Influence of end fixity on post-yield behaviors of a tubular member

  • Cho, Kyu Nam
    • Structural Engineering and Mechanics
    • /
    • v.13 no.5
    • /
    • pp.557-568
    • /
    • 2002
  • For the evaluation of the capability of a tubular member of an offshore structure to absorb the collision energy, a simple method can be employed for the collision analysis without performing the detailed analysis. The most common simple method is the rigid-plastic method. However, in this method any characteristics for horizontal movement and rotation at the ends of the corresponding tubular member are not included. In a real structural system of an offshore structure, tubular members sustain a certain degree of elastic support from the adjacent structure. End fixity has influences in the behaviors of a tubular member. Three-dimensional FEM analysis can include the effect of end fixity fully, however in viewpoints of the inherent computational complexities of the 3-D approach, this is not the recommendable analysis at the initial design stage. In this paper, influence of end fixity on the behaviors of a tubular member is investigated, through a new approach and other approaches. A new analysis approach that includes the flexibility of the boundary points of the member is developed here. The flexibility at the ends of a tubular element is extracted using the rational reduction of the modeling characteristics. The property reduction is based on the static condensation of the related global stiffness matrix of a model to end nodal points of the tubular element. The load-displacement relation at the collision point of the tubular member with and without the end flexibility is obtained and compared. The new method lies between the rigid-plastic method and the 3-demensional analysis. It is self-evident that the rigid-plastic method gives high strengthening membrane effect of the member during global deformation, resulting in a steeper slope than the present method. On the while, full 3-D analysis gives less strengthening membrane effect on the member, resulting in a slow going load-displacement curve. Comparison of the load-displacement curves by the new approach with those by conventional methods gives the figures of the influence of end fixity on post-yielding behaviors of the relevant tubular member. One of the main contributions of this investigation is the development of an analytical rational procedure to figure out the post-yielding behaviors of a tubular member in offshore structures.

Analysis of Behavior of Metal Plate Connection by Nonlinear Finite Element Method (비선형 유한요소법을 이용한 메탈 플레이트 접합부의 거동해석)

  • Hyun, Jae-Hyuk;Kun, Gwang-Chul;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.23-30
    • /
    • 1999
  • have been many studies to analyze the behavior of metal plate connector that most widely used to connect light frame wood trusses. Finite element method{FEM) was one of the methods for those studies. FEM using linear model may well be applicable to predict the initial slope of load-displacement curve for metal plate connection. However, displacement may be overestimated above experimental results with the increase of load. Therefore, linear model cannot be used for the nonlinear behavior part. To predict real behavior more exactly, nonlinear term was included to FEM model in this study. It was found out that EA and AA mode showed the high agreement between predicted results and experimental ones. However, EE and AE mode showed a little difference between predicted results and experimental ones in nonlinear part. This results might be caused by insufficient reflection of the slip effect. Consequently, the effect of slip shall be considered to approve the accuracy of nonlinear analysis for the behavior of metal plate connection.

  • PDF

Foundation Design the 151 story Incheon Tower in Reclamation Area

  • Abdelrazaq, Ahmad;Badelow, Frances;Kim, Sung-Ho;Park, Yung-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.157-171
    • /
    • 2009
  • A 151 storey super high-rise building located in an area of reclaimed land constructed over soft marine clay in Songdo, Korea is currently under design. This paper describes the design process of the foundation system of the supertall tower, which is required to support the large building vertical and lateral loads and to restrain the horizontal displacement due to wind and seismic forces. The behaviour of the foundation system due to these loads and foundation stiffness influence the design of the building super structure, displacement of the tower, as well as the raft foundation design. Therefore, the design takes in account the interactions between soil, foundation and super structure, so as to achieve a safe and efficient building performance. The site lies entirely within an area of reclamation underlain by up to 20m of soft to firm marine silty clay, which overlies residual soil and a profile of weathered rock. The nature of the foundation rock materials are highly complex and are interpreted as possible roof pendant metamorphic rocks, which within about 50m from the surface have been affected by weathering which has reduced their strength. The presence of closely spaced joints, sheared and crushed zones within the rock has resulted in deeper areas of weathering of over 80m present within the building footprint. The foundation design process described includes the initial stages of geotechnical site characterization using the results of investigation boreholes and geotechnical parameter selection, and a series of detailed two- and three-dimensional numerical analysis for the Tower foundation comprising over 172 bored piles of varying length. The effect of the overall foundation stiffness and rotation under wind and seismic load is also discussed since the foundation rotation has a direct impact on the overall displacement of the tower.

  • PDF

Experimental dynamic performance of an Aluminium-MRE shallow shell

  • Zhang, Jiawei;Yildirim, Tanju;Neupane, Guru Prakash;Tao, Yuechuan;Bingnong, Jiang;Li, Weihua
    • Smart Structures and Systems
    • /
    • v.25 no.1
    • /
    • pp.57-64
    • /
    • 2020
  • The nonlinear dynamics of a directly forced clamped-clamped-free-free magneto-rheological elastomer (MRE) sandwich shell has been experimentally investigated. Experiments have been conducted on an aluminium shallow shell (shell A) and an MRE-aluminium sandwich shallow shell with single curvature (shell B). An electrodynamic shaker has been used to directly force shells A and B in the vicinity of their fundamental resonance frequency; a laser displacement sensor has been used to measure the vibration amplitude to construct the frequency-response curves. It was observed that for an aluminium shell (shell A), that at small forcing amplitudes, a weak softening-type nonlinear behaviour was observed, however, at higher forcing amplitudes the nonlinear dynamical behaviour shifted and a strong hardening-type response occurred. For the MRE shell (shell B), the effect of forcing amplitude showed softening at low magnetic fields and hardening for medium magnetic fields; it was also observed the mono-curved MRE sandwich shell changed dynamics to quasiperiodic displacement at some frequencies, from a periodic displacement. The presence of a magnetic field, initial curvature, and forcing amplitude has significant qualitative and quantitative effects on the nonlinear dynamical response of a mono curved MRE sandwich shell.

A Study on function of Artificial Reef by Using Geotexile Tube (토목섬유를 활용한 인공리프의 기능에 관한 연구)

  • Shin, Moon-Seup;Ahn, Kyung-Soo;Shin, Eun-Chul
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.4
    • /
    • pp.623-631
    • /
    • 2003
  • A large scale hydrological laboratory model tests for the geotextile tube were conducted to investigate the stability of geotextile tube and the capability of breakwater with variations of significant wave height, percentage of soil filling, and the water level above geotextile tube. The sliding displacement of geotextile tube is measured to check the stability of geotextile tube for given the various significant wane heights. The marked mash was laid out at the bottom of water channel to measure the displacement of geotextile tube. The bench mark was furnished in the upper part of water channel and the initial location was marked every 10cm interval to measure the displacement of geotextile tube. The wane transmit ratios are analyzed with the variations of soil filling of tube and of the top crown height wave above the geotextile tube in order to study the performance of brekwater before and after the installation of geotextile tube.

Seismic behavior and failure modes of non-ductile three-story reinforced concrete structure: A numerical investigation

  • Hidayat, Banu A.;Hu, Hsuan-Teh;Hsiao, Fu-Pei;Han, Ay Lie;Sosa, Lisha;Chan, Li-Yin;Haryanto, Yanuar
    • Computers and Concrete
    • /
    • v.27 no.5
    • /
    • pp.457-472
    • /
    • 2021
  • Reinforced concrete (RC) buildings in Taiwan have suffered failure from strong earthquakes, which was magnified by the non-ductile detailing frames. Inadequate reinforcement as a consequence of the design philosophy prior to the introduction of current standards resulted in severe damage in the column and beam-column joint (BCJ). This study establishes a finite element analysis (FEA) of the non-ductile detailing RC column, BCJ, and three-story building that was previously tested through a tri-axial shaking table test. The results were then validated to laboratory specimens having the exact same dimensions and properties. FEA simulation integrates the concrete damage plasticity model and the elastic-perfectly plastic model for steel. The load-displacement responses of the column and BCJ specimens obtained from FEA were in a reasonable agreement with the experimental curves. The resulting initial stiffness and maximum base shear were found to be a close approximation to the experimental results. Also, the findings of a dynamic analysis of the three-story building showed that the time-history data of acceleration and displacement correlated well with the shaking table test results. This indicates the FEA implementation can be effectively used to predict the RC frame performance and failure mode under seismic loads.

Study on Improvement of Thermal Stability of Dendrite-shape Copper Particles by Electroless Silver Plating (Dendrite 형상 구리 입자의 무전해 은 도금에 의한 열적 안정성 향상에 관한 연구)

  • Hwang, In-Seong;Nam, Kwang Hyun;Chung, Dae-won
    • Applied Chemistry for Engineering
    • /
    • v.33 no.6
    • /
    • pp.574-580
    • /
    • 2022
  • While in the process of electroless plating of dendrite-shape copper with silver, various silver-coated copper (Ag@Cu) particles were prepared by using both displacement plating and reducing electroless plating. The physicochemical properties of Ag@Cu particles were analyzed by scanning electron microscope- energy-dispersive X-ray spectroscopy (SEM-EDS), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and Brunauer-Emmett-Teller analysis (BET), and it was confirmed that the silver coated by the reducing electroless plating was formed as nano-particles on the copper surface. Ag@Cu particles were compounded with an epoxy resin to prepare a conductive film, and its thermal stability was evaluated. We investigated the effect of the difference between the displacement plating and reducing electroless plating on the initial resistance and thermal stability of conductive films.

A NEW FEEDBACK TECHNIQUE FOR TUNNEL SAFETY BY USING MEASURED DISPLACEMENTS DURING TUNNEL EXCAVATION

  • Sihyun PARK;Yongsuk SHIN;Sungkun PARK
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.432-439
    • /
    • 2009
  • This research project was carried out to develop the technique to assess quantitatively and rapidly the stability of a tunnel by using the measured displacement at the tunnel construction site under excavation. To achieve this purpose, a critical strain concept was introduced and applied to an assessment of a tunnel under construction. The new technique calculates numerically the strains of the surrounding ground by using the measured displacements during excavation. A numerical practical system was developed based on the proposed analysis technique in this study. The feasibility of the developed analysis module was verified by incorporating the analysis results obtained by commercial programs into the developed analysis module. To verify the feasibility of the developed analysis module, analysis results of models both elastic and elasto-plastic grounds were investigated for the circular tunnel design. Then the measured displacements obtained in the field are utilized practically to assess the safety of tunnels using critical strain concept. It was verified that stress conditions of in-situ ground and ground material properties were accurately assessed by inputting the calculated displacement obtained by commercial program into this module for the elastic ground. However for the elasto-plastic ground, analysis module can reproduce the initial conditions more closely for the soft rock ground than for the weathered soil ground. The stability of tunnels evaluated with two types of strains, that is, the strains obtained by dividing the crown displacement into a tunnel size and the strains obtained by using the analysis module. From this study, it is confirmed that the critical strain concept can be fully adopted within the engineering judgment in practical tunnel problems and the developed module can be used as a reasonable tool for the assessment of the tunnel stability in the field.

  • PDF

Research on hysteretic characteristics of EBIMFCW under different axial compression ratios

  • Li, Sheng-cai;Lin, Qiang
    • Earthquakes and Structures
    • /
    • v.22 no.5
    • /
    • pp.461-473
    • /
    • 2022
  • Energy-saving block and invisible multiribbed frame composite wall (EBIMFCW) is an important shear wall, which is composed of energy-saving blocks, steel bars and concrete. This paper conducted seismic performance tests on six 1/2-scale EBIMFCW specimens, analyzed their failure process under horizontal reciprocating load, and studied the effect of axial compression ratio on the wall's hysteresis curve and skeleton curve, ductility, energy dissipation capacity, stiffness degradation, bearing capacity degradation. A formula for calculating the peak bearing capacity of such walls was proposed. Results showed that the EBIMFCW had experienced a long time deformation from cracking to failure and exhibited signs of failure. The three seismic fortification lines of the energy-saving block, internal multiribbed frame, and outer multiribbed frame sequentially played important roles. With the increase in axial compression ratio, the peak bearing capacity and ductility of the wall increased, whereas the initial stiffness decreased. The change in axial compression ratio had a small effect on the energy dissipation capacity of the wall. In the early stage of loading, the influence of axial compression ratio on wall stiffness and strength degradation was unremarkable. In the later stage of loading, the stiffness and strength degradation of walls with high axial compression ratio were low. The displacement ductility coefficients of the wall under vertical pressure were more than 3.0 indicating that this wall type has good deformation ability. The limit values of elastic displacement angle under weak earthquake and elastic-plastic displacement angle under strong earthquake of the EBIMFCW were1/800 and 1/80, respectively.

Static Behavior of Concrete-Filled and Tied Steel Tubular Arch(CFTA) Girder (CFTA거더의 정적 거동연구)

  • Kim, Jong-In;Kim, Doo-kie;Lee, Jang-hyeong;Kim, Jeong-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.3 s.55
    • /
    • pp.225-231
    • /
    • 2009
  • This study introduces the CFTA girder(Concrete-Filled and Tied Steel Tubular Arch Girder) which is a combined structural system of traditional CFT, arch, and prestress structures. Static load tests and structural behavior analyses were carried out for a 25m long CFTA girder. In the analysis, each load of 58kN, 88kN, 148kN, 207kN,and 298kN was applied incrementally at the positions of 1.0 m distances in both directions from the center of the girder. On each test, strain and displacement were measured. Linear static FEM analyses using Strand7 code were also performed to check the structural stability and to investigate the effects of prestressing(${\pm}$20%) and material property(Young's modulus) on the displacement and strain. The results of this study are summarized as follows: the initial strain & displacement under selfweight and prestressing were influenced with the variation of prestressing, but they were mainly effected only by Young's modulus when additional loads were applied.