• 제목/요약/키워드: Initial Design Step

검색결과 256건 처리시간 0.027초

Step-Up 구조를 갖는 다층박막 초소형 구동소자의 초기변형 최소화에 관한 연구 (Minimization of Initial Deflection of Multi-Layered Micro-Actuator with Step-Up Structure)

  • 이희중;강신일
    • 대한기계학회논문집A
    • /
    • 제26권11호
    • /
    • pp.2415-2420
    • /
    • 2002
  • In the present study, a new anchor design was proposed to minimize the initial deflection of micro multi-layer cantilever beam with step-up structure, which is a key component of thin film micro-mirror array. It is important to minimize the initial deflection, caused by residual stress, because it reduces the performance of the actuation. Theoretical and experimental studies were conducted to examine the cause of the initial bending deflection. It was found that the bending deflection at the anchor of the cantilever beam was the primary source of initial deflection. Various anchor designs were proposed and the initial deflections for each design were calculated by finite element analysis. The analysis results were compared with experiments. To reduce the initial deflection a secondary support was added to the conventional structure. The optimal shapes were obtained by simulation and experiment. It was found from the analysis that the ratio or horizontal and vertical dimensions of secondary support was the governing factor, which affected the initial deflection.

박판금속성형의 초기 블랭크 최적설계를 위한 삼차원 다단계 역해석 (Three dimensional multi-step inverse analysis for optimum design of initial blank in sheet metal forming)

  • 이충호;허훈
    • 대한기계학회논문집A
    • /
    • 제21권12호
    • /
    • pp.2055-2067
    • /
    • 1997
  • Values of process parameters in sheet metal forming can be estimated by various one-step inverse methods. One-step inverse methods based on deformation theory, however, cause some amount of error. The amount of error is generally increased as the deformation path becomes more complex. As a remedy, a new three dimensional multi-step inverse method is introduced for optimum design of blank shapes and strain distributions from desired final shapes. The approach extends a one-step inverse method to a multi-step inverse method in order to reduce the amount of error. The algorithm developed is applied to square cup drawing to confirm its validity by demonstrating reasonably accurate numerical results. Rapid calculation with this algorithm enables easy determination of an initial blank of sheet metal forming.

Hooke-and-Jeeves 기법에 의한 최적가로망설계 (Optimal Network Design with Hooke-and-Jeeves Algorithm)

  • 장현봉;박창호
    • 대한교통학회지
    • /
    • 제6권1호
    • /
    • pp.5-16
    • /
    • 1988
  • Development is given to an optimal network design method using continuous design variables. Modified Hooke-and-Jeeves algorithm is implemented in order to solve nonlinear programming problem which is approximately equivalent to the real network design problem with system efficiency crieteria and improvement cost as objective function. the method was tested for various forms of initial solution, and dimensions of initial step size of link improvements. At each searching point of evaluating the objective function, a link flow problem was solved with user equilibrium principles using the Frank-Wolfe algorithm. The results obtained are quite promising interms fo numbers of evaluation, and the speed of convergence. Suggestions are given to selections of efficient initial solution, initial step size and convergence criteria. An approximate method is also suggested for reducing computation time.

  • PDF

막구조물의 준공평형 형상해석에 관한 연구 (A Study on the Actual Equilibrium Analysis for Membrane Structures)

  • 이장복;김재열;권택진
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 봄 학술발표회논문집
    • /
    • pp.61-68
    • /
    • 2000
  • In general, the design of membrane structures takes three steps. The first is shape finding analysis which is determination of initial equilibrium geometry with uniform stresses. The second step involve the computation of the stress-deformation to get completed membrane under various load conditions. The third step is to divide the membrane structures into several plan strips from the initial equilibrium states. This procedure is needed because of the initial shape has usually undevelopable curved surface and is called as "cutting patterns generation". By introducing this work, the deformation due to the initial stress is removed and approximate cutting patterns are generated. In this approach, however, material properties is not considered, therefore the error between the design stresses and actual stresses during the fabrication of plan strips should be occurred. In this paper, actual equilibrium shape analysis procedure for HP shape models is presented. The deviations of stresses between the design stresses and actual stresses are estimated.

  • PDF

역해석을 이용한 차체 부재의 트리밍라인 최적설계 (Optimum Design of Trimming Line by One-Step Analysis for Auto Body Parts)

  • 바오이동;허훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 제5회 박판성형 SYMPOSIUM
    • /
    • pp.49-54
    • /
    • 2006
  • During most of manufacturing processes of auto-body panels, the trimming line should be designed in advance prior to flanging. It is an important task to find a feasible trimming line to obtain a precise final part shape after flanging. This paper proposes a new fast method to find feasible trimming line based on one-step analysis. The basic idea of the one-step analysis is to seek for the nodal positions in the initial blank from the final part, and then the distribution of strain, stress and thickness in the final configuration can be calculated by comparing the nodal position in the initial blank sheet with the one of the final part. The one-step analysis method is able to predict the trimming line before flanging since the desired product shape after flanging can be defined from the final configuration and most of strain paths are simple during the flanging process. Finally, designers can obtain a discrete trimming line from the boundary of the developed meshes after one-step analysis and import it into CAD system in the early design stage. The proposed method has been successfully applied to two basic curve flanging processes demonstrating many advantages.

  • PDF

가변 벌점함수 유전알고리즘을 이용한 고정밀 양면 연삭기 구조물의 경량 고강성화 최적설계 (Structural Design Optimization of a High-Precision Grinding Machine for Minimum Compliance and Lightweight Using Genetic Algorithm)

  • 홍진현;박종권;최영휴
    • 한국정밀공학회지
    • /
    • 제22권3호
    • /
    • pp.146-153
    • /
    • 2005
  • In this paper, a multi-step optimization using genetic algorithm with variable penalty function is introduced to the structural design optimization of a grinding machine. The design problem, in this study, is to find out the optimum configuration and dimensions of structural members which minimize the static compliance, the dynamic compliance, and the weight of the machine structure simultaneously under several design constraints such as dimensional constraints, maximum deflection limit, safety criterion, and maximum vibration amplitude limit. The first step is shape optimization, in which the best structural configuration is found by getting rid of structural members that have no contributions to the design objectives from the given initial design configuration. The second and third steps are sizing optimization. The second design step gives a set of good design solutions having higher fitness for lightweight and minimum static compliance. Finally the best solution, which has minimum dynamic compliance and weight, is extracted from the good solution set. The proposed design optimization method was successfully applied to the structural design optimization of a grinding machine. After optimization, both static and dynamic compliances are reduced more than 58.4% compared with the initial design, which was designed empirically by experienced engineers. Moreover the weight of the optimized structure are also slightly reduced than before.

One-Step Forming을 이용한 박판성형 해석에 관한 연구 (Numerical Study on Sheet Metal Forming Analysis Using the One-Step Forming)

  • 정동원;이상제;김광희
    • 한국해양공학회지
    • /
    • 제13권2호통권32호
    • /
    • pp.11-17
    • /
    • 1999
  • The objective of this paper is to introduce very fast but still stable solution using finite element procedures, and it has been used in an iterative mode for product design applications. A lot of numerical techniques have been developed to deal with the material, geometric and boundary condition non-linearities occurred in the stamping process. One of them, the One-Step FEM is very efficient and useful tool for a design and trouble-shooting in various stamping processes. In this method, the mathod, the material is assumed to deform directly from the initial flat blank to the final configuration without any intermediate steps. The formulation is based on the deformation theory of plasticity and the upper bound theorem. As a result of the calculations, the initial blank shape is obtained, together with the material flow, strains and thickness distribution in the part.

  • PDF

체적등의 구속조건하에서 단면곡선들로부터 B-spline Skinning을 사용한 곡면 디자인 (Surface Design Using B-spline Skinning of Cross-Sectional Curves under Volume Constraint)

  • 김형철
    • 한국CDE학회논문집
    • /
    • 제3권2호
    • /
    • pp.87-102
    • /
    • 1998
  • Given a sequence of cross-sectional curves, the skinning method generates a freeform surface that interpolates the given curves in that sequence. This thesis presents a construction method of a B-spline skinning surface that is fair and satisfies volume constraints. The fairness metric is based on the parametric energy functional of a surface. The degrees of freedom in surface control are closely related lo control points in the skinning direction. The algorithm fur finding a skinning surface consists of two step. In the first step, an initial fair surface is generated without volume constraints and one coordinate of each control point is fixed. In the second step, a final surface that meets all constraints is constucted by rearranging the other coordinates of each control point that defines the initial surface A variational Lagrange optimization method produces a system of nonlinear equations, which can be solved numerically. Moreover, the reparametrization of given sectional curves is important for the construction of a reasonable skinning surface. This thesis also presents an intuitive metric for reparametrization and gives some examples that are optimized with respect to that metric.

  • PDF

굴삭기 Front Group 설계 초기값 제안 모듈 개발 (A Development of Design Initial Value Module for a Front Group of an Excavator)

  • 전기현;이수홍;노태성;김성태
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.127-132
    • /
    • 2005
  • Despite all efforts, many product development projects fail and lead to an introduction of products that do not meet customers' expectations. In general, designers usually relies upon their past experiences of similar products as a source of design knowledge when they work on a new design project. Designers need a set of practical step-by-step tools and methods which ensure a understanding of customers' needs and requirements, as well as a past design experience knowledge. In this paper we propose a design initial value module for an excavator that proposes a key initial design parameter value in an early design stage to improve a design process on Customer Requirements. It makes possible to support designers more effectively, objectively, and easily. Also it can propose better products in terms of a customer satisfaction.

  • PDF

초기설계 단계에서 소형 어선의 복원성 추정 방안에 관한 연구 (Study on the Stability Estimation Method of Small Fishing Vessels at the Initial Design Step)

  • 김혜우;김상현;이선우;이효근;김인태
    • 해양환경안전학회지
    • /
    • 제29권7호
    • /
    • pp.863-870
    • /
    • 2023
  • 연근해에서의 선박 전복사고는 소형 어선에서 많이 발생한다. 소형 어선의 전복사고를 예방하기 위해서는 초기설계 단계에서부터 복원성을 평가하는 것이 매우 중요하다. 하지만 초기설계 단계에서 확보할 수 있는 정보는 제한적이어서 신뢰성 있는 복원성을 평가하는 데 어려움이 있다. 이에 본 연구에서는 초기설계 단계에서 추정할 수 있는 KM, KG, 트림을 활용하여 소형 어선의 횡메타센터(GM)를 추정하고, 표준어선형의 안전성 평가 기준에서 제시된 최소횡메타센터(GMmin)와의 차이를 비교하여 복원성을 평가하는 방안을 제안하였다. 한국해양안전교통공단에서 제공하는 복원성 평가프로그램인 K-SHIP을 사용한 Hydrostatics 특성 계산에서 요구되는 트림을 도출하기 위해 상용 CFD 프로그램인 STAR-CCM+를 이용하여 어선 선형에 따른 초기 상태 트림을 추정하였으며, K-SHIP을 사용하여 어선 선형에 대한 Hydrostatics 특성을 계산하여 GM을 추정하였다. 그리고 GM과 GMmin의 비교를 통해 만재출항상태의 복원성을 비교하였다. 실적선을 기준선으로 선정하여 본 연구에서 제안한 복원성 평가 방안을 적용해 복원성을 평가하고 그 타당성을 검증하였다. 결과적으로 4.99톤 어선의 대표적인 선형과 이를 활용해 도출한 모듈 선형 9개의 복원성을 평가하였고, 이중 상대적으로 복원성이 우수한 선형을 선정하였다.