• Title/Summary/Keyword: Initial Deformation

Search Result 814, Processing Time 0.038 seconds

Effect of Deformation Parameters on The Evolution of Strain State During Asymmetrical Rolling in Aluminum Sheet (알루미늄 판재의 비대칭 압연 시 변형률 상태에 미치는 압연 변수의 영향)

  • Kang H. G.;Park S. H.;Huh M. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.460-462
    • /
    • 2005
  • Asymmetrical rolling was performed with different working roll speeds of upper and lower rolls. In order to promote the shear deformation during asymmetrical rolling, various deformation parameters of initial sheet thickness, rolling reduction, roll speed ratio and roll radius are considered. The evolution of texture during asymmetrical rolling was shown by the calculation of orientation distribution function (ODF). The effect of deformation parameters on shea. deformation were investigated by simulations with the finite element method (FEM). Asymmetrical rolling gave rise to the development of pronounced strain gradients throughout the thickness layers which resulted in the formation of strong texture gradients in the sheet.

  • PDF

Coupling Analysis and Back Analysis for Soil Stress - Deformation - and Seepage - Deformation Analysis by Back Analysis Method (지반응력변형과 지하수침투 해석에 대한 연성해석 및 역해석 -역해석기법을 이용한 지반변형 해석-)

  • 권호진;변광욱
    • Geotechnical Engineering
    • /
    • v.9 no.1
    • /
    • pp.21-30
    • /
    • 1993
  • To know the importance of soil paramters which are used to estimate the deformation and porepressure of soil, the sensitivity for soil parameters in elastic analysis is analyzed. Using the consolidation teat results of several cohesive soils, soil parameters are estimated by back analysis method, and from the parameters the deformations and porepressures of the soil are estimated by elastic analysis, In elastic analysis for soil-deformation and porepressure, the sensitivity for the Young's modulus is large, and the esimation of Young's modulus is more important in pro- portion to the size of stress. Using the measured results during initial short period in small stress, the soil parameters can be correctly estimated by back analysis method. To decrease the iteration number in back analysis and to get the better paramters, the initial measurements in more nodes are required and the more accurate initial measurements are required.

  • PDF

A Study on the Nonlinear Structural Analysis of Barrel Vault-Typed Membrane Roof Structures Considering the Orthotropic Material (직교이방성을 고려한 Barrel Vault형 지붕 막구조물의 비선형 구조해석에 관한 연구)

  • Kim, Seung-Deog;Jeong, Eul-Seok;Baek, In-Seong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.5 no.1 s.15
    • /
    • pp.91-98
    • /
    • 2005
  • Membrane structures, a kind of lightweight soft structural system, are used for spatial structures. The material property of the membrane has strong axial stiffness, but little bending stiffness. Therefore membrane structures are unstable structures initially. These soft structures need to be introduced initial stresses first because of its initial unstable state, and it happens large deformation phenomenon. To find the structural shape after large deformation caused by initial stiffness introduced, we need the shape analysis considering geometric nonlinearity in structural design procedure In this study, we analyze the soft spatial structures by the NASS which is the program for nonlinear analysis. The analytic model is a roof membrane structures of Barrel Vault-Type. We have done the shape analysis and the stress-deformation analysis considering the orthotropic material, and then study the safety.

  • PDF

COUPLED ANALYSIS OF INJECTION MOLDING AND FILM FORMING FOR IDENTIFYING FILM DEFORMATION IN IMD PROCESS (IMD 공정 중 필름 변형 특성 파악을 위한 사출 및 필름성형 간 연계해석)

  • Yoon, J.H.;Hur, N.;Bae, A.H.;Lee, T.H.
    • Journal of computational fluids engineering
    • /
    • v.18 no.3
    • /
    • pp.20-25
    • /
    • 2013
  • In various manufacturing industries, an in-mold decoration (IMD) process for plastic objects is widely utilized because a film forming and an injection molding processes run simultaneously. In the present study, the deformation of polymer film and filling of resin in the IMD process were numerically investigated to evaluate the quality of the plastic object formed by the IMD process, which consists of thermoforming and injection molding processes. To obtain the initial shape of the polymer film during the injection molding process, the deformation of the polymer film in the thermoforming process was pre-formed using the vacuum conditions to attach the film to a cavity. Since the properties and deformation of polymer film are greatly affected by the behavior of polymer resin being injected into a mold cavity, numerical simulations for the injection molding and film forming were performed with one-way coupling method. The results showed that the injected resin could lead to the tearing of the polymer film in local regions near the corners. In order to verify the proposed numerical methodology, the numerical results of the deformation patterns printed on the initial polymer film were compared with the experimental data. The proposed methodology to couple film forming analysis with injection molding analysis can be used to predict the deformation of film in IMD process.

Prediction and Design of Edge Shape of Initial Strip for Thick Tube Roll Forming using Finite Element Method (유한요소해석을 이용한 후육관 롤포밍에서의 초기소재 에지 형상 예측과 설계)

  • Kim, Nak-Su;Lee, Seung-Yun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.4
    • /
    • pp.644-652
    • /
    • 2002
  • Increasing demands for Electric Resistance Welded pipes of high quality with thick wall require c lose investigations in edge deformation by slitting, strip deformation during break down farming, and difference of circumferential length. In order to obtain good quality of a welding zone, it is necessary to predict the edge shape of the initial strip. The modeling of the multi-pass thick tube roll forming process with rigid plastic finite element method ultra the edge shape prediction of an initial strip with 2nd-degree polynomial regression method are presented. Edge shapes of initial strip have been analyzed by the finite element method and designed by the regression method to satisfy the requirements in target fin pass. It is concluded that the proposed edge design method results in optimal edge shapes sat string the design requirements.

A Study on the Face Slab Deformation of Concrete Faced Rockfill Dams During Initial Impoundment (초기 담수 중 콘크리트 표면차수벽형 석괴댐의 슬래브 거동에 관한 연구)

  • Won, Myoung Soo;Kim, Hyeong Joo;Jung, Young Chae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.1
    • /
    • pp.129-139
    • /
    • 2015
  • Concrete-Face Rock-Fill Dams (CFRDs) are rock-fill dams with watertight-concrete slabs on its upstream slope instead of its central earth cores. The design for CFRDs are still largely empirical and typically based on past experiences. This paper presents a description of the concrete face slabs and leakage behaviors of two post-constructed CFRDs based on the data gathered through instrumentation during the initial impoundment. The results show that the strain on the concrete face slab and the horizontal displacements of the vertical slab joints are slightly affected by both the seasonal temperature change and water loading during the initial impoundment. The deformation of perimetric joints are less affected by the temperature change, however it is significantly affected by the water loading during the initial impoundment. The leakage rate is significantly affected by the hydrostatic load and the deformation of the perimetric joints.

Preform Effect on the Plastic Deformation Behavior of Workpieces in Equal Channel Angular Pressing (Equal Channel Angular Pressing 가공 중 소성 변형에 미치는 재료의 초기 형상 효과)

  • Yoon, Seung-Chae;Seo, Min-Hong;Kim, Hyoung-Seop
    • Transactions of Materials Processing
    • /
    • v.15 no.5 s.86
    • /
    • pp.382-386
    • /
    • 2006
  • Preform design is an effective means of achieving the homogeneous deformation of workpiece materials and decreased load in metal forming. However, this approach has not been applied to equal channel angula. pressing (ECAP). In this paper, plastic deformation behavior of workpieces having four different preform shapes during ECAP was investigated using finite element analyses. The results indicated that a preform design of the workpiece head has a beneficial effect on homogeneous deformation, reducing the maximum pressing load at the initial stage and eliminating folding defects at strain concentration points.

Analysis of Cold Workability at the A16061 Bulk Material by Tension and Compression Tests (Al 6061 Bulk재에서 인장 및 압축 시험에 의한 상온 가공성 비교 분석)

  • 김국주;박종수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.74-79
    • /
    • 2003
  • When workability at the a certain bulk deformation process is defined as the maximum plastic deformation capability that the workpiece can sustain without causing any cracks or fracture, the workability is dependent on the microstructure, initial workpiece shape, stress state developed during the deformation process, strain rata and presence of the interfacial friction between workpiece and tool. For a review purpose, the workability definition and test methods are summarized depending on the applied stress state at bulk deformation process in Table 1 at the text. In this study, the cold workabilities of as-cast A16061 bulk material have been measured and comparatively analyzed at the primary tensile stress state by using tensile specimens, the primary compressive stress state by using cylindrical specimens, and the forming limit diagram by ductile fracture.

  • PDF

Transferring Skin Weights to 3D Scanned Clothes

  • Yoon, Seung-Hyun;Kim, Taejoon;Kim, Ho-Won;Lee, Jieun
    • ETRI Journal
    • /
    • v.38 no.6
    • /
    • pp.1095-1103
    • /
    • 2016
  • We present a method for transferring deformation weights of a human character to three-dimensional (3D) scanned clothes. First, clothing vertices are projected onto a character skin. Their deformation weights are determined from the barycentric coordinates of the projection points. For more complicated parts, such as shoulders and armpits, continuously moving planes are constructed and employed as projection reference planes. Clothing vertices on a plane are projected onto the intersection curve of the plane with a character skin to achieve a smooth weight transfer. The proposed method produces an initial deformation for physically based clothing simulations. We demonstrated the effectiveness of our method through several deformation results for 3D scanned clothes.

A Prediction of Out-of-Plane Deformation on a Deck Plate by Temperature Difference between Steel and Air (강판-대기 온도차에 의한 선체블록 주판의 부가 면외변형 추정)

  • Ha, Yun-Sok;Yi, Myung-Su
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.3
    • /
    • pp.222-226
    • /
    • 2012
  • When ship blocks are erected or pre-erected, most blocks will be at outdoors where they are not protected from weather and exposed to ray of the sun. A deck plate compared to those in radiation heat transfer from the sun will have higher temperature than it of ambient air, and will expand more than lower laying structures whose temperatures are similar with air. But deck plates and under-structures are connected, so the deck plate will be under out-of-plane deformation rather than expand in length. In this study, we considered the temperature difference between air and plate as a major parameter of out-of-plane deformation, and analyzed how much additional deformation would take place. In addition, when a deformation could take place was also analyzed based on the initial deformed shape of deck plate. Because the accuracy inspections of deck plate will be done during daytime, conventional accuracy check results on sunny day could make us feel unfair. Thus resonable datum about momentary additional out-of-plane deformation due to environmental effects have been determined. The real deformation values can be specified even under enlarged deformations by radiation-expansion.