• Title/Summary/Keyword: Inhibition of plant fungal pathogen

Search Result 27, Processing Time 0.029 seconds

Rice OsACDR1 (Oryza sativa Accelerated Cell Death and Resistance 1) Is a Potential Positive Regulator of Fungal Disease Resistance

  • Kim, Jung-A;Cho, Kyoungwon;Singh, Raksha;Jung, Young-Ho;Jeong, Seung-Hee;Kim, So-Hee;Lee, Jae-eun;Cho, Yoon-Seong;Agrawal, Ganesh K.;Rakwal, Randeep;Tamogami, Shigeru;Kersten, Birgit;Jeon, Jong-Seong;An, Gynheung;Jwa, Nam-Soo
    • Molecules and Cells
    • /
    • v.28 no.5
    • /
    • pp.431-439
    • /
    • 2009
  • Rice Oryza sativa accelerated cell death and resistance 1 (OsACDR1) encodes a putative Raf-like mitogen-activated protein kinase kinase kinase (MAPKKK). We had previously reported upregulation of the OsACDR1 transcript by a range of environmental stimuli involved in eliciting defense-related pathways. Here we apply biochemical, gain and loss-of-function approaches to characterize OsACDR1 function in rice. The OsACDR1 protein showed autophosphorylation and possessed kinase activity. Rice plants overexpressing OsACDR1 exhibited spontaneous hypersensitive response (HR)-like lesions on leaves, upregulation of defense-related marker genes and accumulation of phenolic compounds and secondary metabolites (phytoalexins). These transgenic plants also acquired enhanced resistance to a fungal pathogen (Magnaporthe grisea) and showed inhibition of appressorial penetration on the leaf surface. In contrast, loss-of-function and RNA silenced OsACDR1 rice mutant plants showed downregulation of defense-related marker genes expressions and susceptibility to M. grisea. Furthermore, transient expression of an OsACDR1:GFP fusion protein in rice protoplast and onion epidermal cells revealed its localization to the nucleus. These results indicate that OsACDR1 plays an important role in the positive regulation of disease resistance in rice.

Screening of Antifungal Activities of Medicinal Plants for the Control of Turfgrass Fungal Disease (잔디 병해 방제를 위한 약용식물의 항균작용 탐색)

  • Kang, Jae Young;Kim, Dae Ho;Lee, Dong Gu;Kim, In Seob;Jeon, Min Goo;Lee, Jae Deuk;Kim, Ik Hwi;Lee, Sanghyun
    • Weed & Turfgrass Science
    • /
    • v.2 no.1
    • /
    • pp.70-75
    • /
    • 2013
  • Seven medicinal plant extracts were tested for antifungal activities against six species of the major turfgrass pathogenic fungi (Colletotrichum graminicola, Pythium spp., Rhizoctonia cerealis, Rhizoctonia solani AG1-1, Rhizoctonia solani AG2-2, and Sclerotinia homoeocarpa) using paper disk diffusion method. Three medicinal plant extracts, including Pinus densiflora showed antifungal activities. In suppression of mycelium growth test, on medium adding P. densiflora extract showed that inhibition rate of mycelium growth were above 80% in 10 mg/10 ml concentration of the extract. The inhibition rate of Pythium spp. was 100% and C. graminicola was 84.3% in 10 mg/10 ml concentrations of P. densiflora extract, respectively. In particularly, the inhibition rate of Pythium spp. was 89.5% in 2 mg/10 ml concentrations of P. densiflora extract. As a result, P. densiflora extract showed high antifungal activity to Pythium spp. and C. graminicola of the turfgrass pathogen in in vitro test.

Observation of Growth Inhibition of Elsinoe fawcettii on Satsuma Mandarin Leaves Pre-treated with Rhizobacterial Strains by a Scanning Electron Microscope (식물근권세균을 처리한 감귤 잎에서 주사전자현미경을 통한 감귤 더뎅이병균의 생장 억제 관찰)

  • Park, Jae Sin;Song, Min-A;Jeun, Yong Chull
    • Research in Plant Disease
    • /
    • v.22 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • Elsinoe fawcettii causing citrus scab was suppressed by rhizobacterial strains such as Burkholderia gladioli MRL408-3, TRH423-3 and Pseudomonas fluorescens THJ609-3, TRH415-2 having antifungal activity. The leaf surface of Satsuma mandarin, which was pre-treated with the rhizobacterial strains, was observed by a scanning electron microscope (SEM) after inoculation with E. fawcettii. The number of lesions was reduced on the leaves pre-treated with the rhizobacterial strains compared to those of untreated leaves. Especially, the lesions numbers was apparently reduced on the leaves pre-treated with B. gladioli MRL408-3. The observation by SEM revealed that not only the germination rate but also the length of germ tube of the pathogen were decreased on the rhizobacterial strains pre-treated leaves. These inhibition of the fungal growth was more strongly expressed on the leaves pre-treated with commercial fungicide imibenconazole, by which the lesions was rarely found on the leaves. Based on these results, it was suggested that rhizobacterial strains may inhibit the germination and growth of the E. fawcettii on the surface of citrus leaves, resulting in decrease of disease severity.

Characteristic of Microorganism and Effect Analysis of Spent Mushroom Compost after Cultivation of Button Mushroom, Agaricus bisporus (양송이버섯 재배 후 폐상퇴비의 효과 분석 및 분리 미생물의 특성)

  • Lee, Chan-Jung;Yun, Hyung-Sik;Cheong, Jong-Chun;Jhune, Chang-Sung;Kim, Seung-Hwan;Lee, Soon-Ja
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.2
    • /
    • pp.123-131
    • /
    • 2009
  • This study was carried out to investigate the feasibility for the use of environmental-friendly materials and the effective recycling of spent mushroom compost(SMC) after cultivation of Button Mushroom, Agaricus bisporus. SMC of white button mushroom contained diverse microorganisms including fluorescent Pseudomonas sp., Bacillus sp., Tricoderma sp. and Actinomycetes. These isolates showed the extensive antifungal spectrum against plant pathogen. Among of the isolates, fungal pathogen such as Alternaria brassicicola, Phytophtora melonis, Phytophthora capsici and Colletotichum gloeosporioides strong showed strong antagonistic activity. 45.8% of the isolates were actively colonized on the pepper root and 5.8% showed rhizosphere competent of >$5{\times}10^2cfu\;root^{-1}$. The plant growth promotion ability of the collected isolates were tested in pot experiments using red pepper seedling. Among them, 62.7% showed pepper growth promoting ability and growth of pepper root showed superior to the control. The germination of pepper treated with aqueous extracts of non-harvest SMC completely inhibited at concentration of more than 33%. The sterilization of SMC resulted in higher inhibition of germination and early growth of pepper. These results suggest that spent mushroom compost(SMC) of Button Mushroom may have adequately the feasibility for the use with environmental-friendly materials.

Food Waste Composting by Using an Inoculum-Mixture Containing New Facultative Anaerobic Bacteria (신규 통성혐기성 세균으로 제조한 발효흙에 의한 음식물 쓰레기의 퇴비화)

  • Hwang, Kyo-Yeol;Lee, Jae-Yeon;Kim, Keun;Sung, Su-Il;Han, Sung-Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.1
    • /
    • pp.65-72
    • /
    • 2001
  • Four newly isolated bacteria from soil were used to manufacture microbial inoculum to compost food waste. The bacteria, GM103, V25, V31, and V35, were identified as Bacillus licheniformis, B. subtilis, B. stearothermophilius, and B, subtilis, respectively. The bacterial strains were efficient to degrade protein and starch and also able to inhibit the growth of plant pathogenic fungus Rhizopus stronifer. The GM103 showed distinct capability in degrading starch, but grow only aerobically. The other three bacterial strains. V25, V31, and V35, could grow both aerobically as well as anaerobically, in 10%(w/v) salt, at $50^{\circ}C$, and had good viability and survival rate in soil. These characteristics of the bacterial strains are very adquate in Korean food composting containing high concentration of salt, especially at home. By mixing the 4 bacterial culture broth with molasses, beet pulp, zeolite, The bacterial inoculum for food waste composting-BIOTOP-CLEAN-was made. The performance of food waste composting by the BIOTOP-CLEAN was compared with that by control(not treated) and HS(other demestic company's inoculum product for food waste composting). The maximum temperature of the food waste during the composting with the BIOTOP-CLEAN was $50^{\circ}C$, while those of the control and HS were $30^{\circ}C$ and $35^{\circ}C$, respectively. The BIOTOP-CLEAN gave the good smell and showed dark brown color, while the control gave bad smell and HS gave less bad smell. These indicates that the food waste composting by the BIOTOP-CLEAN had been well accomplished. The culture broth of V25, V31, V35 were sparyed to the plants of tomato, chinese cabbage, raddish, red pepper every month and the spraying the culture broth to these plant significantly improved the production yield of the crops, due to the control effect of the bacterial strains against the plant pathogens.

  • PDF

Changes of Mating Type Distribution and Fungicide-resistance of Phytophthora infestans Collected from Gangwon Province (강원지역 감자 역병균 Phytophthora infestans의 교배형 및 약제저항성 변화)

  • Park, Kyeong-Hun;Ryu, Kyoung-Yul;Yun, Jeong-Chul;Jeong, Kyu-Sik;Kim, Jeom-Soon;Kwon, Min;Kim, Byung-Sup;Cha, Byeong-Jin
    • Research in Plant Disease
    • /
    • v.16 no.3
    • /
    • pp.274-278
    • /
    • 2010
  • Potato late blight caused by Phytophthora infestans was the most constrain disease at potato cultivation areas. The mating type distribution and fungicides response of P. infestans were investigated to elucidate the changes of pathogen from Gangwon province. On the fungal isolates in 2006, 58.7% were A1 mating type and 41.3% were A2 mating type. In 2007, A1 mating type isolates increased to 93.3% and A2 mating type isolates were collected from Jinbu areas as much as 6.7%. About 234 isolates analysed for metalaxyl response, the results was resistance 73.7%, intermediate 18.8% and sensitive 7.5% in 2006. And it was resistance 59.4%, intermediate 4.0% and sensitive 36.6% in 2007. It meant that mating type distribution and fungicide response were very different over the collection sites. Minimal inhibition concentration (MIC) of dimethomorph examined with 126 isolates in 2006 and 106 isolates in 2007. MIC over $1.0\;{\mu}g/ml$ was 56.3% in 2006 and it was 3.8% in 2007. The average $EC_{50}$ value of P. infestans was $0.37\;{\mu}g/ml$ in 2006, but it decreased to $0.12\;{\mu}g/ml$ in 2007. Fungicides response and pathogenesis of P. infestans should be monitored continuously to enhance the chemical efficacy at potato fields.

Biological Control of Anthracnose (Colletotrichum gloeosporioides) in Red Pepper by Bacillus sp. CS-52 (Bacillus sp. CS-52를 이용한 고추 탄저병 (Colletotrichum gloeosporioides) 방제 특성)

  • Kwon, Joung-Ja;Lee, Jung-Bok;Kim, Beam-Soo;Lee, Eun-Ho;Kang, Kyeong-Muk;Shim, Jang-Sub;Joo, Woo-Hong;Jeon, Chun-Pyo;Kwon, Gi-Seok
    • Korean Journal of Microbiology
    • /
    • v.50 no.3
    • /
    • pp.201-209
    • /
    • 2014
  • This study was carried out in order to develop a biological control of anthracnose of red pepper caused by fungal pathogens. In particular, this study focuses on the Colletotrichum species, which includes important fungal pathogens causing a great deal of damage to red pepper. Antagonistic bacteria were isolated from the soil of pepper fields, which were then tested for biocontrol activity against the Colletotrichum gloeosporioides anthracnose pathogen of pepper. Based on the 16S rRNA sequence analysis, the isolated bacterial strain CS-52 was identical to Bacillus sp. The culture broth of Bacillus sp. CS-52 had antifungal activity toward the hyphae and spores of C. gloeosporioides. Moreover, the substances with antifungal activity were optimized when Bacillus sp. CS-52 was grown aerobically in a medium composed of 0.5% glucose, 0.7% $K_2HPO_4$, 0.2% $KH_2PO_4$, 0.3% $NH_4NO_3$, 0.01% $MnSO_4{\cdot}7H_2O$, and 0.15% yeast extract at $30^{\circ}C$. The inhibition of spore formation resulting from cellulase, siderophores, and indole-3-acetic acid (IAA), were produced at 24 h, 48 h, and 72 h, respectively. Bacillus sp. CS-52 also exhibited its potent fungicidal activity against anthracnose in an in vivo test, at a level of 70% when compared to chemical fungicides. These results identified substances with antifungal activity produced by Bacillus sp. CS-52 for the biological control of major plant pathogens in red pepper. Further studies will investigate the synergistic effect promoting better growth and antifungal activity by the formulation of substances with antifungal activity.