• Title/Summary/Keyword: Inhibition of fungal growth

Search Result 156, Processing Time 0.025 seconds

Characterization of Plant-Growth-Promoting Traits of Acinetobacter Species Isolated from Rhizosphere of Pennisetum glaucum

  • Rokhbakhsh-Zamin, Farokh;Sachdev, Dhara;Kazemi-Pour, Nadia;Engineer, Anupama;Pardesi, Karishma R.;Zinjarde, Smita;Dhakephalkar, Prashant K.;Chopade, Balu A.
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.6
    • /
    • pp.556-566
    • /
    • 2011
  • A total of 31 Acinetobacter isolates were obtained from the rhizosphere of Pennisetum glaucum and evaluated for their plant-growth-promoting traits. Two isolates, namely Acinetobacter sp. PUCM1007 and A. baumannii PUCM1029, produced indole acetic acid (10-13 ${\mu}g$/ml). A total of 26 and 27 isolates solubilized phosphates and zinc oxide, respectively. Among the mineral-solubilizing strains, A. calcoaceticus PUCM1006 solubilized phosphate most efficiently (84 mg/ml), whereas zinc oxide was solubilized by A. calcoaceticus PUCM1025 at the highest solubilization efficiency of 918%. All the Acinetobacter isolates, except PUCM1010, produced siderophores. The highest siderophore production (85.0 siderophore units) was exhibited by A. calcoaceticus PUCM1016. Strains PUCM1001 and PUCM1019 (both A. calcoaceticus) and PUCM1022 (Acinetobacter sp.) produced both hydroxamate-and catechol-type siderophores, whereas all the other strains only produced catechol-type siderophores. In vitro inhibition of Fusarium oxysporum under iron-limited conditions was demonstrated by the siderophore-producing Acinetobacter strains, where PUCM1018 was the most potent inhibitor of the fungal phytopathogen. Acinetobacter sp. PUCM1022 significantly enhanced the shoot height, root length, and root dry weights of pearl millet seedlings in pot experiments when compared with controls, underscoring the plant-growth-promoting potential of these isolates.

Evaluation of a Fungal Strain, Myrothecium roridum F0252, as a Bioherbicide Agent

  • Lee, Hyang-Burm;Kim, Jin-Cheol;Hong, Kyung-Sik;Kim, Chang-Jin
    • The Plant Pathology Journal
    • /
    • v.24 no.4
    • /
    • pp.453-460
    • /
    • 2008
  • In the course of in vitro and in vivo screening for bioherbicidal agents, a hyphomycete fungus, Myrothecium sp. F0252 was selected as a candidate for the biocontrol of weeds. The isolate was identified as Myrothecium roridum Tode ex. Fries based on the morphological characteristics and 18S ribosomal DNA sequence analysis and registered as Myrothecium roridum F0252. In order to evaluate the in vitro effect of M. roridum F0252 on germination of ladino clover and white clover (Trifolium repens L.) seeds, spore solution of the fungus was employed in two concentrations, $6.5{\times}10^6$ and $2.5{\times}10^7$ spores per mL and then inoculated to the seeds. The fungal spores inhibited the seed germination, infected the seedlings, and caused an abnormal withering and inhibition of seedling growth. In addition, when the herbicidal activity of crude ethyl acetate extract from the liquid culture was assessed on a mini-plant, duck-weed (Lemna paucicostata (L.) Hegelm.), the extract showed high inhibitory effect at the level of $12.5{\mu}g$ per mL. On the other hand, in vivo herbicidal activity of M. roridum F0252 was evaluated by a whole plant spray method. M. roridum F0252 exhibited strong and broad-spectrum herbicidal activity. The herbicidal values ranged from 95-100% against 7 weeds, including Abutilon avicennae and Xanthium strumarium, and 70-80% against Digitaria sanguinalis and Sagittaria pygmaea. When the nutritional utilization (95 carbon sources) pattern of M. roridum F0252 was investigated, it varied with water activity ($a_w$) and temperature conditions, supplying good, basic information in regard to nutritional utilization for proper cultivation and formulation. Our results showed that M. roridum F0252 might be used as a potential biocontrol agent against weedy plants.

Production and antifungal effect of 3-phenyllactic acid (PLA) by lactic acid bacteria

  • Yoo, Jeoung Ah;Lim, Young Muk;Yoon, Min Ho
    • Journal of Applied Biological Chemistry
    • /
    • v.59 no.3
    • /
    • pp.173-178
    • /
    • 2016
  • Phenyllactic acid (PLA), which is a known antimicrobial compound, can be synthesized through the reduction of phenylpyruvic acid (PPA) by lactate dehydrogenase of lactic acid bacteria (LAB). PLA-producing LAB was isolated from coffee beans, and the isolated LAB was identified as Lactobacillus zeae Y44 by 16S rRNA gene sequence analysis. Cell-free supernatant (CFS) from L. zeae Y44 was assessed for both its capability to produce the antimicrobial compound PLA and its antifungal activity against three fungal pathogens (Rhizoctonia solani, Botrytis cinerea, and Colletotrichum aculatum). PLA concentration was found to be 4.21 mM in CFS when L. zeae Y44 was grown in MRS broth containing 5 mM PPA for 12 h. PLA production could be promoted by the supplementation with PPA and phenylalanine (Phe) in the MRS broth, but not affected by 4-hydroxy-phenylpyruvic acid, and inhibited by tyrosine as precursors. Antifungal activity assessment demonstrated that all fungal pathogens were sensitive to 5 % CFS (v/v) of L. zeae Y44 with average growth inhibitions ranging from 27.8 to 50.0 % (p<0.005), in which R. solani was the most sensitive with an inhibition of 50.0 %, followed by B. cinerea and C. aculatum. However, pH modification of CFS to pH 6.5 caused an extreme reduction in their antifungal activity. These results may indicate that the antifungal activity of CFS was caused by acidic compounds like PLA or organic acids rather than proteins or peptides molecules.

Antifungal Effect of Phenyllactic Acid Produced by Lactobacillus casei Isolated from Button Mushroom

  • Yoo, Jeoung Ah;Lee, Chan-Jung;Kim, Yong-Gyun;Lee, Byung-Eui;Yoon, Min-Ho
    • Journal of Mushroom
    • /
    • v.14 no.4
    • /
    • pp.162-167
    • /
    • 2016
  • Lactic acid bacteria (LAB) producing phenyllactic acid (PLA), which is known as antimicrobial compound, was isolated from button mushroom bed and the isolated LAB was identified to Lactobacillus casei by 16 rRNA gene sequence analysis. Cell-free supernatant (CFS) from L. casei was assessed for both the capability to produce the antimicrobial compound PLA and the antifungal activity against three fungal pathogens (Rhizoctonia solani, Botrytis cinerea, and Collectotricum aculatum). PLA concentration was investigated to be 3.23 mM in CFS when L. casei was grown in MRS broth containing 5 mM phenylpyruvic acid as precursor for 16 h. Antifungal activity demonstrated that all fungal pathogens were sensitive to 5% CFS (v/v) of L. casei with average growth inhibitions ranging from 34.58% to 65.15% (p < 0.005), in which R. solani was the most sensitive to 65.15% and followed by C. aculatum, and B. cinerea. The minimum inhibitory concentration (MIC) for commercial PLA was also investigated to show the same trend in the range of 0.35 mg mL-1 (2.11 mM) to 0.7 mg mL-1 (4.21 mM) at pH 4.0. The inhibition ability of CFS against the pathogens were not affected by the heating or protease treatment. However, pH modification in CFS to 6.5 resulted in an extreme reduction in their antifungal activity. These results may indicate that antifungal activities in CFS was caused by acidic compounds like PLA or organic acids rather than protein or peptide molecules.

Antifungal Activity of Crude Extract Compound from Rhus verniciflua Against Anthracnose Fungi (Collectotrichum spp.) of Red-Pepper (고추 탄저병균에 대한 옻나무 추출물의 항진균 효과)

  • Song, Chi-Hyoun;Chung, Jong-Bae;Jeong, Byoung-Ryong;Park, Se-Young;Lee, Yong-Se
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.1
    • /
    • pp.60-67
    • /
    • 2012
  • BACKGROUND: Anthracnose disease caused by Collectotrichum spp. is one of the most important worldwide devastating diseases in red pepper plants. Fungicides using plant extracts have several advantages, compared to synthetic chemical fungicides, because they are naturally occurring compounds, are usually safe for agricultural environment and are used for producing highly valuable agricultural products. Efforts for seeking an anti-fungal activities using naturally occurring compounds were mostly conducted from medicinal plant extracts. Sap of Rhus verniciflus was known to have healing effects on several human diseases. Recently, the extracts of Rhus verniciflus were actively tested for anti-cancer, anti-oxidative, and anti-fungal effects. In this study, the extract of Rhus verniciflus was tested for anti-fungal activity against Colletotrichum spp., which cause anthracnose in red-pepper. METHODS AND RESULTS: After neutralizing extracts of Rhus verniciflus (urushiol contents 70%) with autoclave, the crude extracts were used to investigate inhibitory effects for mycelial growth and spore germination of Colletotrichum spp. on PDA media. The mycelial growth and spore germination of Colletotrichum spp. were inhibited 18-39% and over 50% in response to crude extract of R. verniciflus (1.0 mg/mL). After spraying the extracts at the same concentrations above and then artificially inoculating Colletotrichum spp. on blue and red-pepper fruits, in vitro inhibition effects were examined. At 1.0 mg/mL, the crude extract of R. verniciflus showed inhibition activity in anthracnose incidence on blue- and red-pepper as 68.1-75.0%, through a artificial inoculation of Colletotrichum spp. in a laboratory. For in vivo inhibitory effects, the extracts (1.0, 0.1, and 0.01 mg/mL) were treated on red-pepper plants grown in green house 3 times at the interval of 1 week. Then inhibitory effects were determined by counting diseased fruits at 1 week after final treatment. The incidence of anthracnose was inhibited over 60% in the greenhouse by treatment of crude extract of R. verniciflus (1.0 mg/mL). CONCLUSION(s): Extracts of Rhus verniciflus were shown to have inhibitory effects on mycelial growth, spore germination of Colletotrichum spp. in vitro and on occurrence of anthracnose on pepper fruit in green house.

Different Mechanisms of Induced Systemic Resistance and Systemic Acquired Resistance Against Colletotrichum orbiculare on the Leaves of Cucumber Plants

  • Jeun, Yong-Chull;Park, Kyung-Seok;Kim, Choong-Hoe
    • Mycobiology
    • /
    • v.29 no.1
    • /
    • pp.19-26
    • /
    • 2001
  • Defense mechanisms against anthracnose disease caused by Colletotrichum orbiculare on the leaf surface of cucumber plants after pre-treatment with plant growth promoting rhizobacteria(PGPR), amino salicylic acid(ASA) or C. orbiculare were compared using a fluorescence microscope. Induced systemic resistance was mediated by the pre-inoculation in the root system with PGPR strain Bacillus amylolquefaciens EXTN-1 that showed direct antifungal activity to C. gloeosporioides and C. orbiculare. Also, systemic acquired resistance was triggered by the pre-treatments on the bottom leaves with amino salicylic acid or conidial suspension of C. orbiculare. The protection values on the leaves expressing SAR were higher compared to those expressing ISR. After pre-inoculation with PGPR strains no change of the plants was found in phenotype, while necrosis or hypersensitive reaction(HR) was observed on the leaves of plants pre-treated with ASA or the pathogen. After challenge inoculation, inhibition of fungal growth was observed on the leaves expressing both ISR and SAR. HR was frequently observed at the penetration sites of both resistance-expressing leaves. Appressorium formation was dramatically reduced on the leaves of plants pre-treated with ASA, whereas EXTN-1 did not suppress the appressorium formation. ASA also more strongly inhibited the conidial germination than EXTN-1. Conversely, EXTN-1 significantly increased the frequency of callose formation at the penetration sites, but ASA did not. The defense mechanisms induced by C. orbiculare were similar to those by ASA. Based on these results it is suggested that resistance mechanisms on the leaf surface was different between on the cucumber leaves expressing ISR and SAR, resulting in the different protection values.

  • PDF

Antifungal Activity of Glycycoumarin to Candida albicans (Glycycoumarin 감초성분의 항진균효과)

  • Lee, Jue-Hee;Lee, Young-Mi;Han, Yong-Moon
    • YAKHAK HOEJI
    • /
    • v.55 no.3
    • /
    • pp.234-239
    • /
    • 2011
  • Glycycoumarin, a 3-arylcoumarine isolated from Glycyrrhizae radix (a family of Leguminosae), is reported to have anti-bacterial activity. However, its antifungal activity is still unknown. In this present study, the antifungal activity of glycycoumarin (GLM) against Candida albicans, a polymorphic fungus was investigated. Possible mechanism such as blocking of the hyphal induction was also analyzed. By the in-vitro susceptibility analysis, GLM showed anticandidal activity, resulting in an almost complete inhibition of the fungal growth at a concentration of 320 ${\mu}g/ml$, which was equivalent to the efficacy of fluconazole at the same dose. In the murine model of disseminated candidiasis GLM enhanced resistance of mice against the disseminated disease (P<0.05), resulting in 60% protection of GLM-treated mice group during a period of 21-day observation. As for its mechanism of the antifungal activity, GLM blocked hyphal production, one of the important of virulence factors by the fungus, from the yeast form of C. albicans (P<0.01). These data indicate that GLM may contribute to the perspectives that focus on the development of a novel agent with antifungal activity specific for C. albicans infection.

Phytochemical Screening, Isolation, Characterization of Bioactive and Biological Activity of Bungkang, (Syzygium polyanthum) Root-bark Essential Oil

  • Umaru, Isaac John;Umaru, Kerenhappuch I.;Umaru, Hauwa A.
    • The Korean Journal of Food & Health Convergence
    • /
    • v.6 no.3
    • /
    • pp.5-21
    • /
    • 2020
  • Bungkang (Syzygium polyanthum) is a medium to tall plant which produces medicinal root-bark, the plant is normally found along inland river bank and produces small white flowers and fruits. Essential oils are among the most interesting components of the plant extracts consisting mostly of monoterpenoid or sesquiterpenoids. They are used as therapeutic agents in ethno, conventional, and complementary alternative medicines. Investigation and evaluation of the essential oil of Syzygium polyanthum as well as the antibacterial, antioxidant and antifungal activity was ascertained. The experiment was performed. 100 chemical constituents were obtained and two pure compound was isolated as Eugenol (1) and Farnesol (2). Significant growth inhibition of Staphylococcus aureus, (ATCCⓒ25923) Klebsiellia pneumonia (ATCCⓒ19155), Salmonella typhi (ATCCⓒ14028) and Escherichia coli (ATCC©25922) and the fungal strains Aspergillus flavin, Aspergillus niger, Candida, tropicalis, and Fusarium oxysporium was observed from the essential oil at concentration of 500 ㎍/mL. Antioxidant potential was observed to be strong of 18.42 ㎍/mL when compared to the control of 15.23 ㎍/mL. The result indicated that the oil obtained from root-bark of Syzygium polyanthum can be considered as an agent for antioxidant, antibacterial and antifungal in pharmaceutical food and cosmetic industries trails.

Synthesis of New Heterocycles Derived from 3-(3-Methyl-1H-indol-2-yl)-3-oxopropanenitrile as Potent Antifungal Agents

  • Gomha, Sobhi M.;Abdel-Aziz, Hatem A.
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.9
    • /
    • pp.2985-2990
    • /
    • 2012
  • New thiazoline derivatives 7a-c, and thiophenes 9a-c linked to indole moiety were easily prepared via the reaction of the acrylamide derivative 3 with phenacyl bromides 4a-c, depending on the reaction conditions. In addition, the reaction of compound 3 with hydrazonoyl chlorides 11a-f afforded a series of 1,3,4-thiadiazole derivatives 13a-f. Moreover, coupling of 3-(3-methyl-1H-indol-2-yl)-3-oxopropanenitrile (2) with the diazonium salts of 3-phenyl-5-aminopyrazole 16 or 3-amino-1,2,4-triazole 17 gave the corresponding hydrazones 18 and 19, respectively. Cyclization of the latter hydrazones yielded the corresponding pyrazolo[5,1-c]-1,2,4-triazine and 1,2,4-triazolo[5,1-c]-1,2,4-triazine derivatives 20 and 21, respectively. The structures of the synthesized compounds were assigned on the basis of elemental analysis, IR, $^1H$ NMR and mass spectral data. All the synthesized compounds were tested for in vitro activities against certain strains of fungi such as Aspergillus niger, Aspergillus nodulans, Alternaria alternate. Compounds showed marked inhibition of fungal growth nearly equal to the standards.

Antifungal Activity of Lichen-Forming Fungi Isolated from Korean and Chinese Lichen Species Against Plant Pathogenic Fungi

  • Oh, Soon-Ok;Jeon, Hae-Sook;Lim, Kwang-Mi;Koh, Young-Jin;Hur, Jae-Seoun
    • The Plant Pathology Journal
    • /
    • v.22 no.4
    • /
    • pp.381-385
    • /
    • 2006
  • Antifungal activity of Korean and Chinese lichen-forming fungi(LFF) was evaluated against plant pathogenic fungi of Botryosphaeria dothidea, Botrytis cinerea, Diaporthe actinidiae, Pestalotiopsis longiseta, Pythium sp., Rhizoctonia solani, and Sclerotium cepivorum. The LFF were isolated from Cladonia scabriuscula, Melanelia sp., Nephromopsis asahinae, Nephromopsis pallescens, Parmelia laevior, Pertusaria sp., Ramalina conduplicans, Ramalina sinensis, Ramalina sp., Umbilicaria proboscidea and Vulpicida sp. with discharged spore method. The isolates were deposited in the herbarium of Korean Lichen Research Institute(KoLRI) in Sunchon National University. The LFF of Melanelia sp., P. laevior, Pertusaria sp., R. conduplican and Ramalina sp. exhibited strong antifungal activity against all of the pathogenic fungi examined. Among them, LFF of P. laevior showed more than 90% of inhibition in fungal hyphae growth, compared with control. The results imply that LFF can be served as a promising bioresource to develop novel biofungicides. Mass cultivation of the LFF is now under progress in laboratory conditions for chemical identification of antifungal substances.