DOI QR코드

DOI QR Code

Evaluation of a Fungal Strain, Myrothecium roridum F0252, as a Bioherbicide Agent

  • Lee, Hyang-Burm (Division of Applied Bioscience & Biotechnology, Chonnam National University) ;
  • Kim, Jin-Cheol (Korea Research Institute of Chemical Technology) ;
  • Hong, Kyung-Sik (Korea Research Institute of Chemical Technology) ;
  • Kim, Chang-Jin (Korea Research Institute of Bioscience & Biotechnology)
  • Published : 2008.12.01

Abstract

In the course of in vitro and in vivo screening for bioherbicidal agents, a hyphomycete fungus, Myrothecium sp. F0252 was selected as a candidate for the biocontrol of weeds. The isolate was identified as Myrothecium roridum Tode ex. Fries based on the morphological characteristics and 18S ribosomal DNA sequence analysis and registered as Myrothecium roridum F0252. In order to evaluate the in vitro effect of M. roridum F0252 on germination of ladino clover and white clover (Trifolium repens L.) seeds, spore solution of the fungus was employed in two concentrations, $6.5{\times}10^6$ and $2.5{\times}10^7$ spores per mL and then inoculated to the seeds. The fungal spores inhibited the seed germination, infected the seedlings, and caused an abnormal withering and inhibition of seedling growth. In addition, when the herbicidal activity of crude ethyl acetate extract from the liquid culture was assessed on a mini-plant, duck-weed (Lemna paucicostata (L.) Hegelm.), the extract showed high inhibitory effect at the level of $12.5{\mu}g$ per mL. On the other hand, in vivo herbicidal activity of M. roridum F0252 was evaluated by a whole plant spray method. M. roridum F0252 exhibited strong and broad-spectrum herbicidal activity. The herbicidal values ranged from 95-100% against 7 weeds, including Abutilon avicennae and Xanthium strumarium, and 70-80% against Digitaria sanguinalis and Sagittaria pygmaea. When the nutritional utilization (95 carbon sources) pattern of M. roridum F0252 was investigated, it varied with water activity ($a_w$) and temperature conditions, supplying good, basic information in regard to nutritional utilization for proper cultivation and formulation. Our results showed that M. roridum F0252 might be used as a potential biocontrol agent against weedy plants.

Keywords

References

  1. Abbas, H. K., Tak, H., Boyette, C. D., Shier, W. T. and Jarvis, B. B. 2001. Macrocyclic trichothecenes are undetectable in kudzu (Pueraria montana) plants treated with a high-producing isolate of Myrothecium verrucaria. Phytochemistry 58: 269-276 https://doi.org/10.1016/S0031-9422(01)00214-X
  2. Boyette, C. D. and Abbas, H. K. 2001. New bioherbicides whacks weeds. In: Vegetable Production & Marketing News, ed. by F. J. Dainello, pp. 9-10
  3. Boyette, C. D., Hoagland, R. E. and Abbas, H. K. 2007. Evaluation of the bioherbicide Myrothecium verrucaria for weed control in tomato (Lycopersicon esculentum). Biocontrol Sci. Techn. 17:171-178 https://doi.org/10.1080/09583150600937451
  4. Boyette, C. D., Hoagland, R. E., Weaver, M. A. and Reddy, K. N. 2008. Redvine (Brunnichia ovata) and trumpercreeper (Campsis radicans) controlled under field conditions by a synergistic interaction of the bioherbicide, Myrothecium verrucaria, with glyphosate. Weed Biol. Manag. 8:39-45 https://doi.org/10.1111/j.1445-6664.2007.00272.x
  5. Boyette, C. D., Walker, H. L. and Abbas, H. K. 2002. Biological control of kudzu (Pueraria lobata) with an isolate of Myrothecium verrucaria. Biocontrol Sci. Techn. 12:75-82 https://doi.org/10.1080/09583150120093031
  6. Butt, T. M., Jackson, C. and Magan, N. 2001. Introduction-fungal biological control agents: progress, problems and potential. In: Fungi as biocontrol agents, Progress, Problems and Potential, CABI Publishing, UK
  7. Charudattan, R. 1991. The mycoherbicide approach with plant pathogens. In: Microbial control of weeds, ed. by D. O. TeBeest, pp. 24-57. Chapman and Hall, New York, USA
  8. Charudattan, R. 2001. Biological control of water hyacinth by using pathogens: Opportunities, challenges, and recent developments. In: Biological and integrated control of water hyacinth, Eichhornia crassipes, ed. by M. H. Julian, M. P. Hill, T. D. Center and D. Jianquing, p. 102. ACIAR Proceedings
  9. Chase, A. R. and Poole, R. T. 1984. Development of Myrothecium roridum leaf spot of Dieffenbachia maculate 'perfection' at various temperature. Plant Dis. 68:488-490
  10. Christy, A. L., Herbst, K. A., Kostka, S. J., Mullen, J. P. and Carlson, P. S. 1992. Synergizing weed biocontrol agents with chemical herbicides. In: Pest control with enhanced environmental safety, ed. by S. O. Duke, J. J. Menn and J. R. Plimmer, pp. 87-100. Washington DC: American Chemical Society, USA
  11. Clarke, T. C., Shetty, K. G., Jayachandran, K. and Norland, M. R. 2007. Myrothecium verrucaria-a potential biological control agent for the invasive old world climbing fern (Lygodium microphyllum). BioControl 52:399-411 https://doi.org/10.1007/s10526-006-9035-3
  12. Cunfer, B. M. and Lukezic, F. L. 1970. A toxin from Myrothecium and its possible role in Myrothecium leaf spot of red clover. Phytopathology 60:341-344 https://doi.org/10.1094/Phyto-60-341
  13. Cutler, H. G. and Jarvis, B. B. 1985. Preliminary observation on the effects of macrocylic trichothecenes on plant growth. Environ. Exp. Bot. 25:115-128 https://doi.org/10.1016/0098-8472(85)90017-6
  14. Defago, G., Ammon, H. U., Cagan, L., Draeger, B., Greaves, M. P, Guntli, D., Hoeke, D., Klimes, L., Lawrie, J., Moenne-Loccoz, Y., Nicolet, B., Pfirter, H. A., Tabacchi, R. and Toth, P. 2001. Towards the biocontrol of bindweeds with a mycoherbicide. BioControl 46:157-173 https://doi.org/10.1023/A:1011441816615
  15. Domsch, K. H. and Gams, W. 1980. Compendium of soil fungi. Myrothecium, Vol. 1:483-484. Academic Press, London, UK
  16. Drake, G. N. 1980. Effect of Myrothecium roridum on the germination of cotton seeds. Indian Phytopath. 33:591-593
  17. Durbin, R. D. 1981. Toxins in plant disease. Academic Press, New York, USA
  18. El-Kassas, R., Karam El-Din, Z., Beale, M. H., Ward, J. L. and Strange, R. N. 2005. Bioassay-led isolation of Myrothecium verrucaria and verrucarin A as germination inhibitors of Orobanche crenata. Weed Res. 45:212-219 https://doi.org/10.1111/j.1365-3180.2005.00448.x
  19. Ellis, M. B. 1971. Dematiaceous Hyphomycetes. Myrothecium, pp. 552-556. CMI, KEW, UK
  20. Evans, H. C., Mike, P. and Watson, A. K. 2001. Fungal biocontrol agents of weeds. In: Fungi as biocontrol agents. Progress, problems and potential, ed. by T. M. Butt, C. Jackson and N. Magan, CABI Publishing, UK
  21. Fergus, C. L. 1957. Myrothecium roridum on gardenia. Mycologia 49:124-127 https://doi.org/10.2307/3755738
  22. Harper, S. H. and Lynch, J. M. 1981. Effects of fungi on barley seed germination. J. Gen. Microbiol. 122:55-60
  23. Hoagland, R. E., Boyette, C. D. and Abbas, H. K. 2007. Myrothecium verrucaria isolates and formulations as bioherbicide agents for kudzu. Biocontrol Sci. Tech. 17:721-731 https://doi.org/10.1080/09583150701527268
  24. Kathleen, I., Anderson, A. and Steven, G. and Hallett, B. 2004. Herbicidal spectrum and activity of Myrothecium verrucaria. Weed Sci. 52:623-627 https://doi.org/10.1614/WS-03-101R1
  25. Kuti, J. O., Ng, T. J. and Bean, G. A. 1989. Possible involvement of a pathogen-produced trichothecene metabolite in Myrothecium leaf spot of muskmelon. Physiol. Mol. Plant Pathol. 34:41-54 https://doi.org/10.1016/0885-5765(89)90015-5
  26. Lee, H. B., Kim, C. J., Kim, J. S., Hong, K. S. and Cho, K. Y. 2003. A bleaching herbicidal activity of methoxyhygromycin (MHM) produced by an actinomycete strain Streptomyces sp. 8E-12. Lett. Appl. Microbiol. 36:387-391 https://doi.org/10.1046/j.1472-765X.2003.01327.x
  27. Lee, H. B. and Magan, N. 1999. Environmental factors and nutritional utilization patterns affect niche overlap indices between Aspergillus ochraceus and other spoilage fungi. Lett. Appl. Microbiol. 28:300-304 https://doi.org/10.1046/j.1365-2672.1999.00521.x
  28. Lee, H. B., Park, J. Y. and Jung, H. S. 2005. Identification, growth and pathogenicity of Colletotrichum boninense causing leaf anthracnose on Japanese spindle tree. Plant Pathol. J. 21:27-32 https://doi.org/10.5423/PPJ.2005.21.1.027
  29. Lee, H. B., Park, J. Y., Jung, H. S. and Summerbell, R. C. 2006. Phaeomoniella zymoides and Phaeomoniella pinifoliorum spp. nov., new acid-tolerant epiphytic fungi isolated from pine needles in Korea. Mycologia 98:598-611 https://doi.org/10.3852/mycologia.98.4.598
  30. Mackay, W. A., Ng, T. J. and Hammerschlag, F. A. 1994. Cucumis melo L. callus response to toxins produced by Myrothecium roridum Tode ex. Fries. J. Amer. Soc. Hort. Sci. 119:356-360
  31. Muller-Scharer, H., Scheepens, P. C. and Greaves, M. P. 2000. Biological control of weeds in European crops: recent achievement and future work. Weed Res. 40:83-98 https://doi.org/10.1046/j.1365-3180.2000.00170.x
  32. McLean, D. M. and Sleeth, B. 1961. Myrothecium rot of cantaloupes. Plant Dis. Rep. 45:728-729
  33. Preston, N. G. 1961. Observations on the genus Myrothecium, III The cylindrical-spored species of Myrothecium known in Britain. Trans. Brit. Mycol. Soc. 44:31-41 https://doi.org/10.1016/S0007-1536(61)80004-1
  34. Quimby, P. C., DeLoach, C. J., Wineriter, S. A., Goolsby, J. A., Sobhian, R., Boyette, C. D. and Abbas, H. K. 2003. Biological control of weeds: selected USDA-ARS case studies. Pest Manag. Sci. 59:671-680 https://doi.org/10.1002/ps.700
  35. Rosskopf, E. N., Charudattan, R. and Kadir, J. B. 1999. Use of plant pathogens in weed control. In: Handbook of biological control, ed. by T. W. Fisher, T. S. Bellows, L. E. Caltagirone, D. L. Dahlsten, C. Huffaker and G. Gordh, pp. 891-918. Academic Press, San Diego, California, USA
  36. Schoettlera, S., Bascopeb, M., Sternerb, O. and Ankea, T. 2006. Isolation and characterization of two verrucarins from Myrothecium roridum. Z. Naturforsch 61: 309-314
  37. TeBeest, D. O. 1991. Ecology and epidemiology of fungal plant pathogens studied as biological control agents of weeds. In: Microbial control of weeds, ed. by D. O. TeBeest, pp. 97-114. Chapman and Hall, New York, USA
  38. Vincent, A. C. and Charudattan, R. 1999. Effects of formulations of Myrothecium roridum Tode ex. Fr. and Cercospora rodmanii Conway on water hyacinth (Eichhornia crassipes [Mart.] Solms-Laub.) under greenhouse and field conditions. WSSA Abstracts 39:71-72
  39. Vurro, M., Zonno, M. C., Evidente, A., Andolfi, A. and Montemurro, P. 2001. Enhancement of efficacy of Ascochyta caulina to control Chenopodium album by use of phytotoxins and reduced rates of herbicides. Biol. Control 21:182-190 https://doi.org/10.1006/bcon.2001.0933
  40. Walker, H. L. and Tilley, A. M. 1997. Evaluation of an isolate of Myrothecium verrucaria from sicklepod (Senna obtusifolia) as a potential mycoherbicide agent. Biol. Control 10:104-112 https://doi.org/10.1006/bcon.1997.0559
  41. Watson, A. K. 1991. The classical approach with plant pathogens. In: Microbial control of weeds, ed. by D. O. TeBeest, pp. 3-23. Chapman and Hall, New York, USA
  42. Wilson, M. and Lindow, S. E. 1994. Coexistence among epiphytic bacterial populations mediated through nutritional resource partitioning. Appl. Environ. Microbiol. 60:4468-4477
  43. Woodburn, A. 1995. Cotton: the crop and its agrochemicals market. Allan Woodburn Assoc. Ltd., Edimburgh, UK
  44. Yang, S. M. and Brenner, D. 1997. Virulence and host range of three species of Myrothecium on Amaranthus spp. ARS USDA, TEKTRAN, USA

Cited by

  1. Selective isolation and screening of fungi with herbicidal potential and evaluation of herbicidal activity against Vernonia species vol.13, pp.52, 2014, https://doi.org/10.5897/AJB2013.13060
  2. Characterization ofMyrothecium roridumIsolated from Imported Anthurium Plant Culture Medium vol.42, pp.1, 2014, https://doi.org/10.5941/MYCO.2014.42.1.82
  3. Herbicidal activity of pure compound isolated from rhizosphere inhabiting Aspergillus flavus 2017, https://doi.org/10.1080/14786419.2017.1326038
  4. Pathogenicity, host range and activities of a secondary metabolite and enzyme fromMyrothecium roridumon water hyacinth from Thailand vol.16, pp.3, 2016, https://doi.org/10.1111/wbm.12104
  5. ) pp.1556-9551, 2021, https://doi.org/10.1080/15569543.2018.1564772