• Title/Summary/Keyword: Inh-

Search Result 116, Processing Time 0.032 seconds

The Role of N-Acetyl Transferases on Isoniazid Resistance from Mycobacterium tuberculosis and Human: An In Silico Approach

  • Unissa, Ameeruddin Nusrath;Sukumar, Swathi;Hanna, Luke Elizabeth
    • Tuberculosis and Respiratory Diseases
    • /
    • v.80 no.3
    • /
    • pp.255-264
    • /
    • 2017
  • Background:N-acetyl transferase (NAT) inactivates the pro-drug isoniazid (INH) to N-acetyl INH through a process of acetylation, and confers low-level resistance to INH in Mycobacterium tuberculosis (MTB). Similar to NAT of MTB, NAT2 in humans performs the same function of acetylation. Rapid acetylators, may not respond to INH treatment efficiently, and could be a potential risk factor, for the development of INH resistance in humans. Methods: To understand the contribution of NAT of MTB and NAT2 of humans in developing INH resistance using in silico approaches, in this study, the wild type (WT) and mutant (MT)-NATs of MTB, and humans, were modeled and docked, with substrates and product (acetyl CoA, INH, and acetyl INH). The MT models were built, using templates 4BGF of MTB, and 2PFR of humans. Results: On the basis of docking results of MTB-NAT, it can be suggested that in comparison to the WT, binding affinity of MT-G207R, was found to be lower with acetyl CoA, and higher with acetyl-INH and INH. In case of MT-NAT2 from humans, the pattern of score with respect to acetyl CoA and acetyl-INH, was similar to MT-NAT of MTB, but revealed a decrease in INH score. Conclusion: In MTB, MT-NAT revealed high affinity towards acetyl-INH, which can be interpreted as increased formation of acetyl-INH, and therefore, may lead to INH resistance through inactivation of INH. Similarly, in MT-NAT2 (rapid acetylators), acetylation occurs rapidly, serving as a possible risk factor for developing INH resistance in humans.

The Effects of Ethambutol on the Inactivation of Isoniazid

  • Koo, Kun-Hwe;Kim, Jae-Baek
    • Journal of Pharmaceutical Investigation
    • /
    • v.8 no.2
    • /
    • pp.26-34
    • /
    • 1978
  • Isoniazid(INH)는 체내(體內)에서 신속(迅速)히 흡수(吸收)되어 일부(一部)는 치료효과(治療?果)가 있는 유리(遊離) INH로 변(變)하고 일부(一部)는 치료효과(治療?果)가 없는 acetylisoniazid, isonicotinic acid, isonicotinuric acid등(等)으로 대사(代謝)되어 불활성화(不活性化)된다. 가토(家兎)의 뇨(尿) 및 혈장중(血?中)에서 총(總) INH에 대(對)한 유리(遊離) INH의 비(比)를 정색적(呈色的)으로 정량(定量) 산출(算出)함으로써 INH의 불활성화(不活性化)에 미치는 Ethambutol(EMB)의 영향(影響)을 실험(實驗)하였다. 가토(家兎)에 INH를 경구투여(經口投與)한 결과(結果) 그 대사(代謝)에 의(依)한 불활성화비(不活性化比)는 같은 가토(家兎)에서는 비교적(比較的) 일정(一定)하고 개체간(個體間)의 차이(差異)는 현저하였다. INH에 EMB를 배합투여(配合投與)하거나 분자화합물(分子化合物)을 투여(投與)했을 경우 EMB에 의(依)해 INH의 대사(代謝)가 억제(抑制)되어 INH 단독투여시(單獨投與時)보다 유리(遊離) INH가 뇨(尿) 및 혈장중(血漿中)에서 증가(增加)하였다. EMB에 의(依)한 유리(遊離) INH의 상승(上昇)은 INH단독투여(單獨投與)보다 평균(平均) 1.5배(倍)이며 EMB분자화합물(分子化合物)이 EMB배합물(配合物)보다 혈장중(血?中)에서 1.3배(倍) 높게 나타났다.

  • PDF

Mutations of katG and inhA in MDR M. tuberculosis (국내에서 분리된 다제 내성 결핵균의 katG 와 inhA 변이 다양성 및 그 빈도)

  • Lin, Hai Hua;Kim, Hee-Youn;Yun, Yeo-Jun;Park, Chan Geun;Kim, Bum-Joon;Park, Young-Gil;Kook, Yoon-Hoh
    • Tuberculosis and Respiratory Diseases
    • /
    • v.63 no.2
    • /
    • pp.128-138
    • /
    • 2007
  • Backgrounds: Mutations of katG and inhA (ORF and promoter) are known to be related to isoniazid (INH) resistance of Mycobacterium tuberculosis. Because reports on these mutations in Korean isolates are limited (i.e. only the frequency of katG codon 463 was evaluated.), we tried to know the kinds of mutations of two genes and their frequencies in INH resistant Korean M. tuberculosis strains. Methods: PCR was performed to amplify katG (2,223 bp), inhA ORF (-77~897, 975 bp), and inhA promoter (-168~80, 248 bp) from 29 multidrug resistant M. tuberculosis (MDR-TB) DNAs prepared by bead beater-phenol method. Their sequences were determined and analyzed by ABI PRISM 3730 XL Analyzer and MegAlign package program, respectively. Results: All of the isolates had more than one mutation in katG or inhA gene. Twenty seven (93%) of 29 tested strains had katG mutations, which suggests that katG is a critical gene determining INH resistance of M. tuberculosis. Amino acid substitutions, such as Arg463Leu and Ser315Thr, due to point mutations of the katG were the most frequent (62.1% and 55.2%) mutations. In addition, deletion of the katG gene was frequently observed (17.2%). Analyzed Korean MDR-TB isolates also had variable inhA mutations. Point mutation of inhA promoter region, such as -15 ($C{\rightarrow}T$) was frequently found. Substitution of amino acid (Lsy8Asn) due to point mutation ($AAA{\rightarrow}AAC$) of inhA ORF was found in 1 isolate. Interestingly, 14 point mutated types that were not previously reported were newly found. While four types resulted in amino acid change, the others were silent mutations. Conclusions: Although it is not clear that the relationship of these newly found mutations with INH resistance, they show marked diversity in Korean MDR-TB strains. It also suggests their feasibility as a molecular target to supplement determining the INH resistance of clinical isolates because of the possible existence of low-level INH resistant strains.

The Inactivation of Isonicotinic Acid Hydrazid (INH) (Isonicotinic Acid Hydrazid (INH)의 불활성화(不活性化)에 관한 연구(硏究))

  • Kim, Jae-Baek
    • Journal of Pharmaceutical Investigation
    • /
    • v.9 no.3
    • /
    • pp.1-8
    • /
    • 1979
  • The main route of metabolism of isonicotinic acid hydrazid (INH) in man is its conjugation with acetyl coenzyme A to form acetyl-INH. The reaction is catalyzed by an N-acetyl transferase in the liver. The acetylated drug can be excreted by the kidney more efficiently than INH, and the biological half-life of the drug in the body depends upon how rapidly the drug can be acetylated. This report measured the concentration of INH in the blood of 147 individuals 6 hours after they received a standard dose (9.8mg/kg) and plotted the data as a frequeney distribution hiotogram. There was bimodality, with a mean for one subpopulation at approximately $0.6{\sim}0.8\;mcg/ml.$, and a mean for the other subpopulation between 2.8 and 4.0mcg/ml. As might be expected slow acetylators of INH are more likely to develop a cumulative toxicity to the drug. The principle ,toxicity to INH is a peripheral neuritis but this adverse effect can be prevented by given extra pyridoxin to the patients, and the vitamin does not alter the antitubercular activity of INH. This report carried out that pyridoxine does not alter the ratio of free INH to the total INH in blood.

  • PDF

Synthesis, Physico-Chemical and Biological Properties of Complexes of Cobalt(II) Derived from Hydrazones of Isonicotinic Acid Hydrazide (Isonicotinic Acid Hydrazide의 Hydrazone으로부터 유도된 코발트(II) 착물의 합성, 물리-화학 및 생물학적 성질)

  • Prasad, Surendra;Agarwal, Ram K.
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.1
    • /
    • pp.17-26
    • /
    • 2009
  • Hydrazones of isonicotinic acid hydrazide, viz., N-isonicotinamido-furfuralaldimine (INH-FFL), N-isonicotnamido-cinnamalidine (INH-CIN) and N-isonicotnamido-3',4',5'-trimethoxybenzaldimine (INH-TMB) were prepared by reacting isonicotinic acid hydrazide with respective aromatic aldehydes, i.e., furfural, cinnamaldehyde or 3,4,5-trimethoxy-benzaldehyde. A new series of fifteen complexes of cobalt(II) with these new hydrazones, INH-FFL, INH-CIN and INH-TMB, were synthesized by their reaction with cobalt(II) salts. The infrared spectral data reveal that hydrazone ligands behave as a bidentate ligand with N, O donor sequence towards the $Co^{2+}$ ion. The complexes were characterized on the basis of elemental analysis, magnetic susceptibility, conductivity, infrared and electronic spectral measurements. Analytical data reveal that the complexes have general composition [Co($L)_2X_2]\;and\;[Co(L)_3](ClO_4)_2$ where L= INH-FFL, INH-CIN or INH-TMB and X = $Cl^-,{NO_3}-,\;NCS^-\;or\;CH_3COO^-.$ The thermal behaviour of the complexes were studied using thermogravimetrictechnique. Electronic spectral results and magnetic susceptibility measurements are consistent with the adoption of a six-coordinate geometry for the cobalt(II) chelates. The antimicrobial properties of cobalt(II) complexes and few standard drugs have revealed that the complexes have very moderate antibacterial activities.

Molecular Analysis of Isoniazid-Resistance Related Genes of Mycobacterium tuberculosis Isolated from Korea

  • Hwang Joo Hwan;Jeong Eun Young;Choi Yeon Im;Bae Kiho;Song Taek Sun;Cho Sang-Nae;Lee Hyeyoung
    • Biomedical Science Letters
    • /
    • v.11 no.4
    • /
    • pp.455-463
    • /
    • 2005
  • Resistance to isoniazid (INH), which is one of the most important drugs in Mycobacterium tuberculosis chemotherapy, has been associated with mutations in genes encoding the mycobacterial catalse-peroxidase (katG), the enoyl acyl carrier protein (ACP) reductase (inhA), alkyl hydroperoxide reductase (ahpC), beta-ketoacyl acyl carrier protein synthase (kasA), and NADH dehydrogenase (ndh). In this study, we examined INH-resistance related genes in 50 INH-resistant and 24 INH-susceptible isolates by PCR-sequence analysis. In brief, mutations at the katG gene were found at codon 315 alone (2/50), at codon 463 alone (19/50), and both at 315 and 463 (29/50). However, while mutations at codon 315 were only detected in INH-resistant isolates, mutations at codon 463 were also detected in INH-susceptible isolates indicating mutations at 463 alone do not seem to confer resistance to INH. Similar to the case of katG 463, some of inhA mutations were also found among INH-susceptible isolates. For example, whereas mutations at 8 upstream of the start codon (UPS) and 15 UPS of the inhA gene were detected only in INH-resistant isolates, mutations at 101, 115, and 125 UPS were detected only in INH-susceptible isolates. Many different kinds of mutations were detected in INH­resistant isolates at ahpC, oxyR gene, and intergenic region of the oxyR-ahpC genes. Howerver, the mutations were not found oxyR and the intergenic regions in INH-susceptible isolates. No mutations were found at either kasA or at ndh gene among INH-resistant isolates. In conclusion, some of mutations such as katG 315, inhA promotor region, and oxyR-ahpC seem to be strongly related to INH-resistance. Currently we are developing a molecular diagnostic method based on these results.

  • PDF

만성 신부전 환자에서 Acetylation 대사변동에 관한 연구

  • 김성권;이정상;한진석;신재국
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1993.04a
    • /
    • pp.166-166
    • /
    • 1993
  • 만성 신부전환자에서 isoniazid(INH)의 약동학적 변화여부를 검토하고 특히 N-acetylation 대사능의 억제 여부를 평가함으로써 만성신부전환자에서 적정 INH 항결핵 요법율 위한 기본자료를 제공코자 하였다. 본 연구는 pararell group 디자인에 의한 일차 연구와 sequential 디자인에 의한 2차연구로 진행하였다. 일차 연구는 37명의 정상 성인군과 14명의 만성신부전 환자군을 대상으로 INH 400 mg 경구 투여 후 INH 및 AcINH의 약동학적 성상을 비교하였다. 이차연구는 만성신부전 환자에서 신이식에 따른 INH의 acetylation 대사능의 변화를 관찰코자 1차연구에 참여하고 성공적인 신이식을 받은 환자 10명을 대상으로 INH 및 AcINH의 약동학적 검토를 재시행하였으며, 이러한 연구 방법을 통하여 만성 신부전 환자에서 Acetylation 대사능의 변화를 검토하였다.

  • PDF

Correlation between GenoType MTBDRplus Assay and Phenotypic Susceptibility Test for Prothionamide in Patients with Genotypic Isoniazid Resistance

  • Lee, Joo Hee;Jo, Kyung-Wook;Shim, Tae Sun
    • Tuberculosis and Respiratory Diseases
    • /
    • v.82 no.2
    • /
    • pp.143-150
    • /
    • 2019
  • Background: The purpose of this study was to analyze the relationship between the gene mutation patterns by the GenoType MTBDRplus (MTBDRplus) assay and the phenotypic drug susceptibility test (pDST) results of isoniazid (INH) and prothionamide (Pto). Methods: A total of 206 patients whose MTBDRplus assay results revealed katG or inhA mutations were enrolled in the study. The pDST results were compared to mutation patterns on the MTBDRplus assay. Results: The katG and inhA mutations were identified in 68.0% and 35.0% of patients, respectively. Among the 134 isolated katG mutations, three (2.2%), 127 (94.8%) and 11 (8.2%) were phenotypically resistant to low-level INH, high-level INH, and Pto, respectively. Among the 66 isolated inhA mutations, 34 (51.5%), 18 (27.3%) and 21 (31.8%) were phenotypically resistant to low-level INH, high-level INH, and Pto, respectively. Of the 34 phenotypic Pto resistant isolates, 21 (61.8%), 11 (32.4%), and two (5.9%) had inhA, katG, and both gene mutations. Conclusion: It is noted that Pto may still be selected as one of the appropriate multidrug-resistant tuberculosis regimen, although inhA mutation is detected by the MTBDRplus assay until pDST confirms a Pto resistance. The reporting of detailed mutation patterns of the MTBDRplus assay may be important for clinical practice, rather than simply presenting resistance or susceptibility test results.

Synthesis, Antitubercular Activity and Pharmacokinetic Studies of Some Schiff Bases Derived from 1-Alkylisatin and Isonicotinic Acid Hydrazide (INH)

  • Tarek, Aboul-Fadl;Mohammed, Faragany Abdel-Hamid;Hassan, Ehsan Abdel-Saboor
    • Archives of Pharmacal Research
    • /
    • v.26 no.10
    • /
    • pp.778-784
    • /
    • 2003
  • N'-(1-alkyl-2,3-dihydro-2-oxo-1H-3-indolyliden)-4-pyridinecarboxylic acid hydrazide derivatives, 3(a-g), were synthesized in a trial to overcome the resistance developed with the therapeutic uses of isoniazid (INH). The lipophilicity of the synthesized derivatives supersedes that of the INH as expressed by Clog p values. The synthesized compounds and INH were tested against bovin, human sensitive and human resist strains of Mycobacterium tuberculosis. Compounds 3a, 3d, 3f and 3g with 1-unsubstituted, 1-propyl, 1-propynyl and 1-benzyl groups respectively exhibited equipotent growth inhibitory activity (MIC 10 $\mu$mol) against the tested strains as compared with INH however the later has no activity against human resist strain. Pharmacokinetic study revealed that the rate and extent of absorption of the tested derivatives (3d and 3f) significantly higher than that of INH (p<0.05). The relative bioavailabilities ($F_R%$) were 183.15 and 443.25 for 3f and 3d respectively as compared to INH. These results preliminary indicate the possible use of the prepared derivatives for treatment of tuberculosis infections in order to overcome the resistance developed with INH.

Pharmacokinetic Study of Isoniazid and Rifampicin in Healthy Korean Volunteers (정상 한국인에서의 Isoniazid와 Rifampicin 약동학 연구)

  • Chung, Man-Pyo;Kim, Ho-Cheol;Suh, Gee-Young;Park, Jeong-Woong;Kim, Ho-Joong;Kwon, O-Jung;Rhee, Chong-H.;Han, Yong-Chol;Park, Hyo-Jung;Kim, Myoung-Min;Choi, Kyung-Eob
    • Tuberculosis and Respiratory Diseases
    • /
    • v.44 no.3
    • /
    • pp.479-492
    • /
    • 1997
  • Background : Isoniazid(INH) and rifampicin(RFP) are potent antituberculous drugs which have made tuberculous disease become decreasing. In Korea, prescribed doses of INH and RFP have been different from those recommended by American Thoracic Society. In fact they were determined by clinical experience rather than by scientific basis. Even there has been. few reports about pharmacokintic parameters of INH and RFP in healthy Koreans. Method : Oral pharmacokinetics of INH were studied in 22 healthy native Koreans after administration of 300 mg and 400mg of INH to each same person successively at least 2 weeks apart. After an overnight fast, subjects received medication and blood samples were drawn at scheduled times over a 24-hour period. Urine collection was also done for 24 hours. Pharmacokinetics of RFP were studied in 20 subjects in a same fashion with 450mg and 600mg of RFP. Plasma and urinary concentrations of INH and RFP were determined by high-performance liquid chromatography(HPLC). Results : Time to reach peak serum concentration (Tmax) of INH was $1.05{\pm}0.34\;hrs$ at 300mg dose and $0.98{\pm}0.59\;hrs$ at 400mg dose. Half-life was $2.49{\pm}0.88\;hrs$ and $2.80{\pm}0.75\;hrs$, respectively. They were not different significantly(p > 0.05). Peak serum concentration(Cmax) after administration of 400mg of INH was $7.14{\pm}1.95mcg/mL$ which was significantly higher than Cmax ($4.37{\pm}1.28mcg/mL$) by 300mg of INH(p < 0.01). Total clearance(CLtot) of INH at 300mg dose was $26.76{\pm}11.80mL/hr$. At 400mg dose it was $21.09{\pm}8.31mL/hr$ which was significantly lower(p < 0.01) than by 300mg dose. While renal clearance(CLr) was not different among two groups, nonrenal clearance(CLnr) at 400mg dose ($18.18{\pm}8.36mL/hr$) was significantly lower than CLnr ($23.71{\pm}11.52mL/hr$) by 300mg dose(p < 0.01). Tmax of RFP was $1.11{\pm}0.41\;hrs$ at 450mg dose and $1.15{\pm}0.43\;hrs$ at 600mg dose. Half-life was $4.20{\pm}0.73\;hrs$ and $4.95{\pm}2.25\;hrs$, respectively. They were not different significantly(p > 0.05). Cmax after administration of 600mg of RFP was $13.61{\pm}3.43mcg/mL$ which was significantly higher than Cmax($10.12{\pm}2.25mcg/mL$) by 450mg of RFP(p < 0.01). CLtot of RFP at 450mg dose was $7.60{\pm}1.34mL/hr$. At 600mg dose it was $7.05{\pm}1.20mL/hr$ which was significantly lower(p < 0.05) than by 450mg dose. While CLr was not different among two groups, CLnr at 600 mg dose($5.36{\pm}1.20mL/hr$) was significantly lower than CLnr($6.19{\pm}1.56mL/hr$) by 450mg dose(p < 0.01). Conclusion : Considering Cmax and CLnr, 300mg, of INH and 450mg RFP might be sufficient doses for the treatment of tuberculosis in Koreans. But it remains to be clarified in the patients with tuberculosis.

  • PDF