Mutations of katG and inhA in MDR M. tuberculosis

국내에서 분리된 다제 내성 결핵균의 katG 와 inhA 변이 다양성 및 그 빈도

  • Lin, Hai Hua (Department of Microbiology and Cancer Research Institute, Seoul National University Hospital) ;
  • Kim, Hee-Youn (Department of Microbiology and Cancer Research Institute, Seoul National University Hospital) ;
  • Yun, Yeo-Jun (Department of Microbiology and Cancer Research Institute, Seoul National University Hospital) ;
  • Park, Chan Geun (Department of Microbiology and Cancer Research Institute, Seoul National University Hospital) ;
  • Kim, Bum-Joon (Department of Microbiology and Cancer Research Institute, Seoul National University Hospital) ;
  • Park, Young-Gil (The Korean Institute of Tuberculosis, The Korean National Tuberculosis Association) ;
  • Kook, Yoon-Hoh (Department of Microbiology and Cancer Research Institute, Seoul National University Hospital)
  • 림해화 (서울대학교 의과대학 미생물학교실 및 암연구소) ;
  • 김희연 (서울대학교 의과대학 미생물학교실 및 암연구소) ;
  • 윤여준 (서울대학교 의과대학 미생물학교실 및 암연구소) ;
  • 박찬근 (서울대학교 의과대학 미생물학교실 및 암연구소) ;
  • 김범준 (서울대학교 의과대학 미생물학교실 및 암연구소) ;
  • 박영길 (대한결핵협회 결핵연구원) ;
  • 국윤호 (서울대학교 의과대학 미생물학교실 및 암연구소)
  • Received : 2007.07.09
  • Accepted : 2007.07.26
  • Published : 2007.08.30

Abstract

Backgrounds: Mutations of katG and inhA (ORF and promoter) are known to be related to isoniazid (INH) resistance of Mycobacterium tuberculosis. Because reports on these mutations in Korean isolates are limited (i.e. only the frequency of katG codon 463 was evaluated.), we tried to know the kinds of mutations of two genes and their frequencies in INH resistant Korean M. tuberculosis strains. Methods: PCR was performed to amplify katG (2,223 bp), inhA ORF (-77~897, 975 bp), and inhA promoter (-168~80, 248 bp) from 29 multidrug resistant M. tuberculosis (MDR-TB) DNAs prepared by bead beater-phenol method. Their sequences were determined and analyzed by ABI PRISM 3730 XL Analyzer and MegAlign package program, respectively. Results: All of the isolates had more than one mutation in katG or inhA gene. Twenty seven (93%) of 29 tested strains had katG mutations, which suggests that katG is a critical gene determining INH resistance of M. tuberculosis. Amino acid substitutions, such as Arg463Leu and Ser315Thr, due to point mutations of the katG were the most frequent (62.1% and 55.2%) mutations. In addition, deletion of the katG gene was frequently observed (17.2%). Analyzed Korean MDR-TB isolates also had variable inhA mutations. Point mutation of inhA promoter region, such as -15 ($C{\rightarrow}T$) was frequently found. Substitution of amino acid (Lsy8Asn) due to point mutation ($AAA{\rightarrow}AAC$) of inhA ORF was found in 1 isolate. Interestingly, 14 point mutated types that were not previously reported were newly found. While four types resulted in amino acid change, the others were silent mutations. Conclusions: Although it is not clear that the relationship of these newly found mutations with INH resistance, they show marked diversity in Korean MDR-TB strains. It also suggests their feasibility as a molecular target to supplement determining the INH resistance of clinical isolates because of the possible existence of low-level INH resistant strains.

연구배경: INH 내성은 katG 와 inhA(ORF와 promoter)의 변이에 의한 것으로 알려져 있다. 유전자 변이는 지역적으로 종류와 빈도가 다르게 나타날 수 있는데 기존 국내의 연구보고들은 흔하다고 알려진 katG의 463 코돈만을 추적한 것들이었다. 따라서 본 연구는 국내에서 분리된 INH 내성균들의 두 유전자에서 나타날 수 있는 변이의 종류와 빈도를 확인하고자 하였다. 연구방법: 대한결핵협회 결핵연구원에서 MDR-TB로 판명된 INH 내성 결핵균 29주로부터 bead beater-phenol법으로 DNA를 추출하여 katG(2,223 bp), inhA ORF(-77~897, 975 bp) 및 inhA promoter(-168~80, 248 bp) 염기서열 결정 및 분석은 ABI PRISM 3730 XL Analyzer 및 MegAlign package를 사용하였다. 결과: 모든 균주들은 분석 표적으로 사용한 세 유전자 부위 중에서 적어도 한 개 이상의 유전자 부위에 변이가 있었다. INH 내성균은 거의 대부분(>93%) katG의 변이를 갖고 inhA 유전자 변이만 있는 경우는 드물어 INH 내성을 결정하는 중요한 요인은 katG의 변이 인 것을 확인할 수 있었다. katG 부위에서 Arg463Leu 변이와 Ser315Thr 변이가 높은 빈도(62.1% 및 55.2%)로 발견되었고, katG 완전결실과 inhA promoter-15($C{\rightarrow}T$) 변이도 일정한 빈도로 나타남을 볼 수 있었다. 그 외 inhA ORF 변이도 1주에서 1종류의 변이가 발견되었다. 결론: 기존 연구결과에서는 보고되지 않고 본 연구에서 처음으로 확인된 변이들도 14 종류나 있어서, INH 내성은 주로 katG 혹은 일부 inhA 특정 부위의 변이가 주도하지만 이들 외에도 다양한 변이가 존재한다는 것을 알 수 있었다. 이들 새로이 확인된 변이들은 염기서열 분석에 의한 INH 내성 여부 판단 시, 기존 알려진 변이 외에 보조 자료로 사용할 수 있을 것으로 생각한다.

Keywords

References

  1. Dye C, Scheele S, Thlin P, Pathania V, Raviglione MC. Consensus statement. Global burden of tuberculosis: estimated incidence, prevalence, and mortality by country. WHO Global Surveillance and Monitoring Project, JAMA 1999;282:677-86 https://doi.org/10.1001/jama.282.7.677
  2. Bai GH Anti-tuberculosis drug resistance in Korea. Communicable Diseases Monthly Report 2005;16: 101-7
  3. Crofton J, Chaulet P, Maher D, Grosset J, Harris W, Norman H, et al. Guidelines for the management of drug-resistant tuberculosis. Geneva: World Health Organization; 1997
  4. World Health Organization. Anti-tuberculosis drug resistance in the world: the WHO/IUATLD global project on antituberculosis drug resistance surveillance 1994 - 1997. Geneva: World Health Organization;1997
  5. Kim SY, Lee JY, Ryu SR, Kim SJ, Bai GH Rapid diagnosis of isoniazid resistance by detection of mutations in katG and inhA of Mycobacterium tuberculosis in Korea. J Bacteriol Virol 1997;32:569-76
  6. Park YK, Shim MS, Cho SH, Bai GH, Kim SJ. The relationship between isoniazid resistance and 463 codon mutation of katG gene in Mycobacterium tuberculosis. Tuberc Respir Dis 1996;43:8-13 https://doi.org/10.4046/trd.1996.43.1.8
  7. Dye C, Espinal MA, Watt CJ, Mbiaga C, 'Williams BG. Worldwide incidence of multi drug-resistant tuberculosis. J Infect Dis 2002;185:1197-202 https://doi.org/10.1086/339818
  8. Morlock GP, Metehock B, Sikes D, Crawford JT, Cooksey RC. ethA, inhA, and katG loci of ethionamide- resistant clinical Mycobacterium tuberculosis isolates. Antimicrob Agents Chemother 2003;47:3799-805 https://doi.org/10.1128/AAC.47.12.3799-3805.2003
  9. Zhang Y, Heym B, Allen B, Young D, Cole S. The catalase- peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature 1992;358:591-3 https://doi.org/10.1038/358591a0
  10. Heym B, Zhang Y, Poulet S, Young D, Cole ST. Characterization of the katG gene encoding a catalase-peroxidase required for the isoniazid susceptibility of Mycobacterium tuberculosis. J Bacteriol 1993;175:4255-9 https://doi.org/10.1128/jb.175.13.4255-4259.1993
  11. O'Brien KL, Dietz HC, Romagnoli M, Eiden J. Evaluation of inhA gene and catalase-peroxidase gene among isoniazid-sensitive and resistant Mycobacterium tuberculosis isolates. Mol Cell Probes 1996; 10:1-6 https://doi.org/10.1006/mcpr.1996.0001
  12. Lee AS, Tang LL, Lim IH, Ling ML, Tay L, Wong SY. Lack of clinical significance for the common arginineto- leucine substitution at codon 463 of the katG gene in isoniazid-resistant Mycobacterium tuberculosis in Singapore. J Infect Dis 1997;176:1125-7 https://doi.org/10.1086/517320
  13. Banerjee A, Dubnau E, Quemard A, Balasubramanian V, Urn KS, Wilson T, et al. InhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science 1994;263:227- 30 https://doi.org/10.1126/science.8284673
  14. Larsen MH, Vilcheze C, Kremer L, Besra GS, Parsons L, Salfinger M, et al. Overexpression of inhA, but not kasA, confers resistance to isoniazid and ethionamide in Mycobacterium smegmatis, M boois BCG and M tuberculosis. Mol Microbiol 2002;46:453-66 https://doi.org/10.1046/j.1365-2958.2002.03162.x
  15. Basso LA, Zheng R, Musser JM, Jacobs WR, Blanchard JS. Mechanisms of isoniazid resistance in Mycobacterium tuberculosis: enzymatic characterization of enoyl reductase mutants identified in isoniazid resistant clinical isolates. J Infect Dis 1998;178: 769-75 https://doi.org/10.1086/515362
  16. Kapur V, Li LL, Hamrick MR, Plikaytis BB, Shinnick TM, Telenti A, et al. Rapid Mycobacterium species assignment and unambiguous identification of mutations associated with antimicrobial resistance in Mywbacterium tuberculosis by automated DNA sequencing. Arch Pathol Lab Med 1995;119:131-8
  17. Ristow M, Mohlig M, Rifai M, Schatz H, Feldmann K, Pfeiffer A New isoniszid/ethionamide resistance gene mutation and screening for multi drug-resistant Mycobacterium tuberculosis strains. Lancet 1995;346:502-3
  18. Lee H, Cho SN, Bang HE, Lee JH, Bai GH, Kim SJ, et al. Exclusive mutations related to isoniazid and ethionamide resistance among Mycobacterium tuberculosis isolates from Korea. Int J Lung Dis 2000;4:441-7
  19. Morris S, Bai GH, Suffys P, Portillo-Gomez L, Fairchok M, Rouse D. Molecular mechanisms of multiple drug resistance in clinical isolates of Mycobacterium tuberculosis. J Infect Dis 1995; 171:954-60 https://doi.org/10.1093/infdis/171.4.954
  20. Musser JM, Kapur V, Williams DL, Kreiswirth BN, van SoolingenD, van Embden JD. Characterization of the catalase-peroxidase gene (katG) and inhA locus in isoniazid-resistant and isoniazid-susceptible strains of Mycobacterium tuberculosis by automated DNA sequencing: restricted array of mutations associated with drug resistance. J Infect Dis 1996;173:196-202 https://doi.org/10.1093/infdis/173.1.196
  21. Rouse DA, Li Z, Bai GH, Morris SL Characterization of the katG and inhA genes of isoniazid-resistant clinical isolates of Mycobacterium tuberculosis. Antimicrob Agents Chemother 1995;39:2472-7 https://doi.org/10.1128/AAC.39.11.2472
  22. Gonzalez N, Torres MJ, Aznar J, Palomares JC. Molecular analysis of rifampin and isoniazid resistance of Mycobacterium tuberculosis clinical isolates in Seville, Spain. Tuber Lung Dis 1999;79:187-90 https://doi.org/10.1054/tuld.1998.0195
  23. Heym B, Honore N, Truffot-Pemot C, Banerjee A, Schurra C, Jacobs WR, et al. Implications of multi-drug resistance for the future short-course chemotherapy of tuberculosis: a molecular study. Lancet 1994;344:293-8 https://doi.org/10.1016/S0140-6736(94)91338-2
  24. Rinder H, Thomschke A, Rusch-Gerdes S, Bretzel G, Feldmann K, Rifai M, et al. Significance of ahpC promoter mutations for the prediction of isoniazid resistance in Mycobacterium tuberculosis. Eur J Clin Microbiol Infect Dis 1998;17:508-11
  25. Silva MS, Senna SG, Ribeiro MO, Valim AR, Telles MA, Kritski A, et al. Mutations in katG, inhA, and ahpC genes of Brazilian isoniazid-resistant isolates of Mycobacterium tuberculosis. J Clin Microbiol 2003;41:4471-4 https://doi.org/10.1128/JCM.41.9.4471-4474.2003
  26. Lee AS, Lim IH, Tang LL, Telenti A, Wong SY. Contribution of kasA analysis to detection of isoniazid-resistant Mycobacterium tuberculosis in Singapore. Antimicrob Agents Chemother 1999;43: 2087-9
  27. Lee AS, Teo AS, Wong SY. Novel mutations in ndh in isoniazid-resistant Mycobacterium tuberculosis isolates. Antimicrob Agents Chemother 2001;45:2157-9 https://doi.org/10.1128/AAC.45.7.2157-2159.2001
  28. Kim BJ, Lee SH, Lyu MA, Kim SJ, Bai GH, Chae GT, et al. Identification of mycobacterial species by comparative sequence analysis of the RNA polymerase gene (rpoB). J Clin Microbiol 1999;37:1714-20
  29. Shim TS, Yoo CG, Han SK, Shim YS, Kim YW. Isoniazid resistance and the point mutation of codon 463 of katG gene of Mycobacterium tuberculosis. J Korean Med Sci 1997;12:92-8 https://doi.org/10.3346/jkms.1997.12.2.92
  30. Marttila HJ, Saini H, Huovinen P, Viljanen MK katG mutations in isoniazid-resistant Mycobacterium tuberculosis isolates recovered from Finnish patients. Antimicrob Agents Chemother 1996;40:2187-9
  31. Altamirano M, Marostenmaki J, Wong A, FitzGerald M, Black WA, Smith JA. Mutations in the catalasemperoxidase gene from isoniazid resistant Mycobacterium tuberculosis isolates. J Infect Dis 1994;169:1162-5 https://doi.org/10.1093/infdis/169.5.1162
  32. Cockerill FR. 3rd, Uhl JR, Temesgen Z, Zhang Y, Stockman L, Roberts GD, et al. Rapid identification of a point mutation of the Mycobacterium tuberculosis catalase-peroxidase (katG) gene associated with isoniazid resistance. J Infect Dis 1995;171:240-5 https://doi.org/10.1093/infdis/171.1.240
  33. Heym B, Alzari PM, Honore N, Cole ST. Missense mutations in the catalase-peroxidase gene, katG, are associated with isoniazid resistance in Mycobacterium tuberculosis. Mol Microbiol 1995;15:235-45 https://doi.org/10.1111/j.1365-2958.1995.tb02238.x
  34. Rouse DA, Morris SL. Molecular mechanisms of isoniazid resistance in Mycobacterium tuberculosis and Mycobacterium bouis. Infect Immun 1995;63:1427-33
  35. Bakonyte D, Baranauskaite A, Cicenaite J, Sosnovskaja A, Stakenas P. Molecular characterization of isoniazid-resistant Mycobacterium tuberculosis clinical isolates in Lithuania. Antimicrob Agents Chemother 2003;47:2009-11 https://doi.org/10.1128/AAC.47.6.2009-2011.2003
  36. Torres MJ, Criado A, Gonzalez N, Palomares JC, Aznar J. Rifampin and isoniazid resistance associated mutations in Mycobacterium tuberculosis clinical isolates in Seville, Spain. Int J Tuberc Lung Dis 2002;6:160-3
  37. Pretorius GS, van Helden PD, Sirgel F, Eisenach KD, Victor TC. Mutations in katG gene sequences in isoniazid-resistant clinical isolates of Mycobacterium tuberculosis are rare. Antimicrob Agents Chemother 1995;39:2276-81 https://doi.org/10.1128/AAC.39.10.2276
  38. Bobadilla-deI-Valle M, Ponce-de-Leon A, ArenasHuertero C, Vargas-Alarcon G, Kato-Maeda M, Small PM, et al. rpoB gene mutations in rifampin-resistant Mycobacterium tuberculosis identified by polymerase chain reaction single-stranded conformational polymorphism. Emerg Infect Dis 2001;7:1010-3 https://doi.org/10.3201/eid0706.010615
  39. Moghazeh SL, Pan X, Arain T, Stover CK, Musser JM, Kreiswirth BN. Comparative antimycobacterial activities of rifampin, rifapentine, and KRM-1648 against a collection of rifampin-resistant Mycobacterium tuberculosis isolates with known rpoB mutations. Antimicrob Agents Chemother 1996;40: 2655-7
  40. Williams DL, Spring L, Collins L, Miller LP, Heifets LB, Gangadharam PR, et al. Contribution of rpoB mutations to development of rifamycin cross-resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 1998;42:1853 - 7
  41. Bodmer T, Zurcher G, Imboden P, Telenti A. Mutation position and type of substitution in the B-subunit of the RNA polymerase influence in-vitro activity of rifamycins in rifampicin-resistant Mycobacterium tuberculosis. J Antimicrob Chemother 1995;35:345-8 https://doi.org/10.1093/jac/35.2.345