• Title/Summary/Keyword: Infrared microscopy

Search Result 549, Processing Time 0.023 seconds

Preparation and Characterization of Low Infrared Emissivity Bicomponent Fibers with Radar Absorbing Property (레이더 흡수특성이 있는 저적외선 방출 복합섬유의 제조 및 특성 연구)

  • Yu Bin;Qi Lu
    • Polymer(Korea)
    • /
    • v.30 no.2
    • /
    • pp.124-128
    • /
    • 2006
  • Heavy weight of the camouflage materials was always the main problem. To solve it, the low infrared emissivity fibers with the radar absorbing property (LIFR) were prepared. The low infrared emissivity fibers (LIF) were firstly melt-spun by co-extrusion of polypropylene (PP) and PP/various fillers master-batches using general conjugate spinning. The infrared emissivity of LW with AA and ZnO was decreased respectively compared with that of pure polypropylene fibers. The infrared emissivity of LIF with 15 wt% Al and 2 wt% ZnO in the sheath-part can reach 0.58. To improve LIF radar absorbing property, LIFR was prepared by filling the 50 wt% ferrite and bronze in the core-part of LIF. The radar absorbing efficacy of LIFR was good and the infrared emissivity was low. For the characterization, fiber electron intensity instrument and differential scanning calorimetry (DSC) were used for the analysis of mechanical properties, thermal and crystallization behavior of the spun-fibers. Scanning electron microscopy (SEM) was carried out to observe the particle distribution of the bicomponent fibers.

Scanning acoustic microscopy for material evaluation

  • Hyunung Yu
    • Applied Microscopy
    • /
    • v.50
    • /
    • pp.25.1-25.11
    • /
    • 2020
  • Scanning acoustic microscopy (SAM) or Acoustic Micro Imaging (AMI) is a powerful, non-destructive technique that can detect hidden defects in elastic and biological samples as well as non-transparent hard materials. By monitoring the internal features of a sample in three-dimensional integration, this technique can efficiently find physical defects such as cracks, voids, and delamination with high sensitivity. In recent years, advanced techniques such as ultrasound impedance microscopy, ultrasound speed microscopy, and scanning acoustic gigahertz microscopy have been developed for applications in industries and in the medical field to provide additional information on the internal stress, viscoelastic, and anisotropic, or nonlinear properties. X-ray, magnetic resonance, and infrared techniques are the other competitive and widely used methods. However, they have their own advantages and limitations owing to their inherent properties such as different light sources and sensors. This paper provides an overview of the principle of SAM and presents a few results to demonstrate the applications of modern acoustic imaging technology. A variety of inspection modes, such as vertical, horizontal, and diagonal cross-sections have been presented by employing the focus pathway and image reconstruction algorithm. Images have been reconstructed from the reflected echoes resulting from the change in the acoustic impedance at the interface of the material layers or defects. The results described in this paper indicate that the novel acoustic technology can expand the scope of SAM as a versatile diagnostic tool requiring less time and having a high efficiency.

Fluorescent Silk Fibroin Nanoparticles Prepared Using a Reverse Microemulsion

  • Myung, Seung-Jun;Kim, Hun-Sik;Kim, Yeseul;Chen, Peng;Jin, Hyoung-Joon
    • Macromolecular Research
    • /
    • v.16 no.7
    • /
    • pp.604-608
    • /
    • 2008
  • Color dye-doped silk fibroin nanoparticles were successfully fabricated using a microemulsion method. An aqueous silk fibroin solution was prepared by dissolving cocoons (Bombyx mori) in a concentrated lithium bromide solution followed by dialysis. A color dye solution was also mixed with the aqueous silk fibroin solution. The surfactants used for the microemulsion were then removed by methanol and ethanol, yielding color dye-doped silk fibroin nanoparticles, approximately 167 nm in diameter. The secondary structure of the nanoparticles showed a $\beta$-sheet conformation, as characterized by Fourier transform infrared spectroscopy. The morphology of the nanoparticles was determined by field emission scanning electron microscopy, transmission electron microscopy and atomic force microscopy, and their size and size distribution were measured by dynamic light scattering. The color dye-doped silk fibroin nanoparticles were examined by confocal laser scanning microscopy.

Deposition of Polytetrafluoroethylene Thin Films by IR-pulsed Laser Ablation (Nd:YAG 레이저에 의한 폴리테트라플루오르에틸렌 박막 증착)

  • Park Hoon;Seo Yu-Suk;Hong Jin-Soo;Chae Hee-Baik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.1
    • /
    • pp.58-63
    • /
    • 2005
  • PTFE (polytetrafluoroethylene) thin films were prepared from the pellets of the graphite doped PTFE via pulsed laser ablation with 1064 nm Nd:YAG laser. The graphite powder converts the absorbed photon energy into thermal energy which is transmitted to nearby PTFE. The PTFE is decomposed by thermal process. The deposited films were transparent and crystalline. SEM (scanning electron microscopy) and AFM (atomic force microscopy) analyses indicated that the film surface morphology changed to fibrous structure with increasing thickness. The fluorine to carbon ratios of the film were 1.7 and molecular axis was parallel with (100) Si-wafer substrate. These results obtained by XPS (X-ray photoelectron spectroscopy), FTIR (fourier transform infrared spectroscopy) and XRD (X-ray diffraction).

  • PDF

P(VDF-HPF)-Based Polymer Electrolyte Filled with Mesoporous ZnS (메조포러스 ZnS가 충전된 P(VDF-HPF) 고분자 전해질)

  • Seo, Young-ju;Cha, Jong-Ho;Lee, Huen;Ha, Yong-Joon;Koh, Jeong Hwan;Lee, Chulhaeng
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.170-174
    • /
    • 2008
  • ZnS-polymer gel films were prepared with incorporating mesoporous ZnS synthesized by surfactant-assisted templating process and poly (vinylidene fluoride)-hexafluoropropylene copolymer (P(VDF-HFP)) in order to observe the variation of ionic conductivities according to the various weight ratios between ZnS and P(VDF-HFP). Ionic conductivities for each gel electrolyte were measured with increasing temperature. As a result, ionic conductivities increased with increasing the amount of ZnS and temperature. In particular, the films with 20 and 25 wt% ZnS were found that they possessed the high ionic conductivity of approximately $10^{-4}Scm^{-1}$ at room temperature. However, above 20 wt% of ZnS, the enhancement of ionic conductivity was not observed. For the characterization of ZnS and the gel electrolyte, XRD (x-ray diffractometer), DSC (differential scanning calorimetry), TGA (thermogravimetric analysis), FT-IR (fourier transform-infrared spectrometer), SEM (scanning electron microscopy) and TEM (transmission electron microscopy) were employed. Ionic conductivities were measured by a.c. impedance method.

Preparation of Spherical TiO2 Nanoparticles Using Amphiphilic PCZ-r-PEG Random Copolymer Template Membrane (양친성 PCZ-r-PEG 랜덤 공중합체 분리막을 이용한 구형 이산화티타늄 나노입자의 제조)

  • Lee, Jae Hun;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.29 no.3
    • /
    • pp.183-189
    • /
    • 2019
  • Amphiphilic PCZ-r-PEG random copolymer assisted solvothermal process is used to prepare mesoporous $TiO_2$ microspheres generated from nanoparticles by self-assembly method. Synthesized PCZ-r-PEG is characterized by Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR), gel permeation chromatography (GPC) and transmission electron microscopy (TEM). The mesoporous $TiO_2$ are prepared by PCZ-r-PEG, glucose, water in tertrahydrofuran solution at $150^{\circ}C$ for 12 h and the $TiO_2$ microspheres are calcined at $550^{\circ}C$ for 30 min to further crystallize and organic residue are removed. Morphology and crystallization phase is characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) respectively. The mesoporous $TiO_2$ crystallized in pure anatase phase with diameter of $300{\pm}20nm$.

Design and Analysis of Optical Properties of Anti-reflection Coated ZnS Substrates in the Mid-infrared Region (중적외선 영역의 무반사 코팅된 ZnS 기판의 설계와 광학 특성)

  • Park, Buem Keun;Paik, Jong-Hoo
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.255-259
    • /
    • 2022
  • In this study, we fabricated ZnS substrates with excellent transmittance in the mid-infrared region (3-5 ㎛) using hot pressing instead of conventional chemical vapor deposition (CVD). Diamond-like carbon (DLC) was coated on either one or both sides of the ZnS substrates to improve their mechanical properties and transmittance efficiency. To reduce the reflectance and further improve transmittance in the mid-infrared region, anti-reflection (AR) coating was designed for DLC/ZnS /AR and AR/ ZnS /AR structures. The coating structure, microstructure, and optical properties of the AR-coated ZnS substrates were subsequently investigated by employing energy dispersive X-ray spectroscopy, scanning electron microscopy, and Fourier-transform infrared (FTIR) spectroscopy. The FTIR spectroscopy results demonstrated that, in the mid-infrared region, the average transmittance of the samples with AR coating on one and both sides increased by approximately 18% and 27%, respectively. Thus, AR coating improved the transmittance of the ZnS substrates.

Optimization of sintering process of the far-infrared radiation ceramic (원적외선 방사 세라믹의 소결공정 최적화)

  • Park, Jae Hwa;Kim, Hyun Mi;Kang, Hyo Sang;Choi, Jae Sang;Choi, Bong Geun;Nam, Ki Woong;Nam, Han Woo;Shim, Kwang Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.1
    • /
    • pp.28-34
    • /
    • 2016
  • Far-infrared radiation ceramic is an attractive material that provides thermal therapy by permeating the infrared rays into the deep inside of the human skin. Therefore, it is currently used for thermal therapy devices, thermal mat, heating equipment and so on. This work aims to optimize the sintering process of the far-infrared radiation ceramic with the process parameters of temperature and time. A variety of characterization tools have been used to investigate the optimal sintering condition of far-infrared radiation. The phase of far-infrared radiation ceramic was characterized by using X-ray diffraction (XRD) and microstructure of fracture surface was studied by scanning electron microscopy (SEM). The FT-IR was also performed to measure the far-infrared emissivity.