Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2019.29.3.183

Preparation of Spherical TiO2 Nanoparticles Using Amphiphilic PCZ-r-PEG Random Copolymer Template Membrane  

Lee, Jae Hun (Department of Chemical and Biomolecular Engineering, Yonsei University)
Patel, Rajkumar (Energy and Environmental Science and Engineering, Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University)
Publication Information
Membrane Journal / v.29, no.3, 2019 , pp. 183-189 More about this Journal
Abstract
Amphiphilic PCZ-r-PEG random copolymer assisted solvothermal process is used to prepare mesoporous $TiO_2$ microspheres generated from nanoparticles by self-assembly method. Synthesized PCZ-r-PEG is characterized by Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR), gel permeation chromatography (GPC) and transmission electron microscopy (TEM). The mesoporous $TiO_2$ are prepared by PCZ-r-PEG, glucose, water in tertrahydrofuran solution at $150^{\circ}C$ for 12 h and the $TiO_2$ microspheres are calcined at $550^{\circ}C$ for 30 min to further crystallize and organic residue are removed. Morphology and crystallization phase is characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) respectively. The mesoporous $TiO_2$ crystallized in pure anatase phase with diameter of $300{\pm}20nm$.
Keywords
$TiO_2$; solvothermal; polymer; self-assembly;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. Xu, H. Zheng, P. Zhang, W. Lin, and Y. Sekiguchi, "Hydrothermal preparation of nanoporous $TiO_2$ films with exposed {001} facets and superior photocatalytic activity", J. Mater. Chem. A, 3, 19115 (2015).   DOI
2 H. A. Hamad, M. M. Abd El-latif, A. B. Kashyout, W. A. Sadik, and M. Y. Feteha, "Influence of calcination temperature on the physical properties of nano-titania prepared by sol gel/hydrothermal method", Russ. J. Phys. Chem. A, 89, 1896 (2015).   DOI
3 M. M. Mohamed, W. A. Bayoumy, M. Khairy, and M. A. Mousa, "Synthesis of micro-mesoporous $TiO_2$ materials assembled via cationic surfactants: Morphology, thermal stability and surface acidity characteristics", Micropor. Mesopor. Mat., 103, 174 (2007).   DOI
4 B. Sun, G. Zhou, C. Shao, B. Jiang, J. Pang, and Y. Zhang, "Spherical mesoporous $TiO_2$ fabricated by sodium dodecyl sulfate-assisted hydrothermal treatment and its photocatalytic decomposition of papermaking wastewater", Powder Technol., 256, 118 (2014).   DOI
5 A. A. Ismail and D. W. Bahnemannb, "Mesoporous titania photocatalysts: Preparation, characterization and reaction mechanisms", J. Mater. Chem., 21, 11686 (2011).   DOI
6 J. Yu, H. Guo, S. A. Davis, and S. Mann, "Fabrication of hollow inorganic microspheres by chemically induced self-transformation", Adv. Funct. Mater., 16, 2035 (2006).   DOI
7 J. Yu, S. Liu, and H. Yu, "Microstructures and photoactivity of mesoporous anatase hollow microspheres fabricated by fluoride-mediated self-transformation", J. Catalysis, 249, 59 (2007).   DOI
8 G. Xi, S. Ouyang, and J. Ye, "General synthesis of hybrid $TiO_2$ mesoporous "French Fries" toward improved photocatalytic conversion of $CO_2$ into hydrocarbon fuel: A case of $TiO_2$/ZnO", Chem. Eur. J., 17, 9057 (2011).   DOI
9 S. Quan, S. W. Li, Y. C. Xiao, and L. Shao, "$CO_2$-selective mixed matrix membranes (MMMs) containing graphene oxide (GO) for enhancing sustainable $CO_2$ capture", Int. J. Greenh. Gas Con., 56, 22 (2017).   DOI
10 L. Yu, F. Lin, W. Xiao, D. Luo, and J. Xi, "CNT@polydopamine embedded mixed matrix membranes for high-rate and long-life vanadium flow batteries", J. Membr. Sci., 549, 411 (2018).   DOI
11 M. P. Pileni, "Nanocrystal self-assemblies: Fabrication and collective properties", J. Phys. Chem. B, 105, 3358 (2001).   DOI
12 A. E. Amooghin, M. Omidkhah, and A. Kargari, "Enhanced $CO_2$ transport properties of membranes by embedding nano-porous zeolite particles into Matrimid$^{(R)}$ 5218 matrix", RSC Adv., 5, 8552 (2015).   DOI
13 J. Kim, Q. Fu, K. Xie, J. M. Scofield, S. E. Kentish, and G. G. Qiao, "$CO_2$ separation using surface- functionalized $SiO_2$ nanoparticles incorporated ultra-thin film composite mixed matrix membranes for post-combustion carbon capture", J. Membr. Sci., 515, 54 (2016).   DOI
14 X. Y. Chen, H. Vinh-Thang, D. Rodrigue, and S. Kaliaguine, "Effect of macrovoids in nano-silica/polyimide mixed matrix membranes for high flux $CO_2$/$CH_4$ gas separation", RSC Adv., 4, 12235 (2014).   DOI
15 B. Kim, S. L. Tripp, and A. Wei, "Self-organization of large gold nanoparticle arrays", J. Am. Chem. Soc., 123, 7955 (2001).   DOI
16 X. Lu, F. Huang, X. Mou, Y. Wang, and F. Xu, "A general preparation strategy for hybrid $TiO_2$ hierarchical spheres and their enhanced solar energy utilization efficiency", Adv. Mater., 22, 3719 (2010).   DOI
17 D. K. Roh, S. J. Kim, W. S. Chi, J. K. Kim, and J. H. Kim, "Dual-functionalized mesoporous $TiO_2$ hollow nanospheres for improved $CO_2$ separation membranes", Chem. Commun., 50, 5717 (2014).   DOI
18 G. D. Cheng, L. Cao, F. Huang, P. Imperia, Y.-B. Cheng, and R. A. Caruso, "Synthesis of monodisperse mesoporous titania beads with controllable diameter, high surface areas and variable pore diameter (14-23 nm)", J. Am. Chem. Soc., 132, 4438 (2010).   DOI
19 C. Tian, Z. Zhang, J. Hou, and N. Luo, "Surfactant/copolymer template hydrothermal synthesis of thermally stable, mesoporous $TiO_2$ from $TiOSO_4$", Mater. Lett., 62, 77 (2008).   DOI
20 Q.-Q. Cheng, Y. Cao, L. Yang, P.-P. Zhang, K. Wang, and H.-J. Wang, "Synthesis of titania microspheres with hierarchical structures and high photocatalytic activity by using nonanoic acid as the structure-directing agent", Mater. Lett., 65, 2833 (2011).   DOI
21 P. W. Morgan, "Linear condensation polymers from phenolphthalein and related compounds", J. Polym. Sci. A, 2, 437 (1964).
22 J. A. Moore and T. Tannahill, "Homo- and co-polycarbonates and blends derived from diphenolic acid", High Perform. Polym., 13, 305 (2001).   DOI
23 W. B. Kim and J. S. Lee, "Comparison of polycarbonate precursors synthesized from catalytic reactions of bisphenol-A with diphenyl carbonate, dimethyl carbonate, or carbon monoxide", J. Appl. Polym. Sci., 86, 937 (2002).   DOI
24 B. Woo and K. Y. Choi, "Melt polycondensation of bisphenol A polycarbonate by a forced gas sweeping process", Ind. Eng. Chem. Res., 40, 1312 (2001).   DOI
25 F. Liu, C.-L. Liu, B. Hu, W.-P. Kong, and C.-Z. Qi, "High temperature hydrothermal synthesis of crystalline mesoporous $TiO_2$ with superior photocatalytic activities", Appl. Surf. Sci., 258, 7448 (2012).   DOI
26 M. M. Momeni and Y. Ghayeb, "Photoelectrochemical water splitting on chromium-doped titanium dioxide nanotube photoanodes prepared by single-step anodizing", J. Alloys Compds., 637, 393 (2015).   DOI
27 G. Fu, G. Wei, Y. Yang, W. C. Xiang, and N. Qiao, "Facile synthesis of Fe-doped titanate nanotubes with enhanced photocatalytic activity for castor oil oxidation", J. Nanomat., 2013, 4 (2013).
28 S. Khan, I. A. Qazi, I. Hashmi, M. A. Awan, and N. S. Zaidi, "Synthesis of silver-doped titanium $TiO_2$ powder-coated surfaces and its ability to inactivate Pseudomonas aeruginosa and Bacillus subtilis", J. Nanomater., 2013, 8 (2013).
29 K. Liu, S. Lin, J. Liao, N. Pan, and M. Zeng, "Synthesis and characterization of hierarchical structured $TiO_2$ nanotubes and their photocatalytic performance on methyl orange", J. Nanomat., 2015, 8 (2015).
30 S. Pan, Y. Zhao, G. Huang, J. Wang, S. Baunack, T. Gemming, M. Li, L. Zheng, O. G. Schmidt, and Y. Mei, "Highly photocatalytic $TiO_2$ interconnected porous powder fabricated by sponge templated atomic layer deposition", Nanotechnol., 26, 364001 (2015).   DOI
31 H. Mehranpour, M. Askari, M. S. Ghamsari, and H. Farzalibeik, "Study on the phase transformation kinetics of sol-gel drived $TiO_2$ nanoparticles", J. Nanomat., 2010, 5 (2010).
32 G. Cappelletti, S. Ardizzone, F. Spadavecchia, D. Meroni, and I. Biraghi, "Mesoporous titania nanocrystals by hydrothermal template growth", J. Nanomat., 2011, 9 (2011).
33 B. D. Cullity, "Elements of x-ray diffraction", Addison-Wesley Pub. (1978).
34 S. J. Sun, K. Y. Hsu, and T. C. Chang, "Thermotropic liquid crystalline polycarbonates. VI. Synthesis and properties of fully aromatic liquid crystalline polycarbonates by interfacial or solution polycondensation", Polym. J., 29, 25 (1997).   DOI
35 S. J. Sun, Y. C. Liao, and T. C. Chang, "Studies on the synthesis and properties of thermotropic liquid crystalline polycarbonates. VII. Liquid crystalline polycarbonates and poly(ester-carbonate)s derived from various mesogenic groups", J. Polym. Sci. A, 38, 1852 (2000).   DOI
36 M. J. Marks, S. Munjal, S. Namhata, D. C. Scott, F. Bosscher, J. A. De Letter, and B. Klumperman, "Randomly branched bisphenol A polycarbonates. I. Molecular weight distribution modeling, interfacial synthesis, and characterization", J. Polym. Sci. A Polym. Chem., 38, 560 (2000).   DOI