DOI QR코드

DOI QR Code

Preparation of Spherical TiO2 Nanoparticles Using Amphiphilic PCZ-r-PEG Random Copolymer Template Membrane

양친성 PCZ-r-PEG 랜덤 공중합체 분리막을 이용한 구형 이산화티타늄 나노입자의 제조

  • Lee, Jae Hun (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Patel, Rajkumar (Energy and Environmental Science and Engineering, Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University)
  • Received : 2019.06.24
  • Accepted : 2019.06.27
  • Published : 2019.06.30

Abstract

Amphiphilic PCZ-r-PEG random copolymer assisted solvothermal process is used to prepare mesoporous $TiO_2$ microspheres generated from nanoparticles by self-assembly method. Synthesized PCZ-r-PEG is characterized by Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR), gel permeation chromatography (GPC) and transmission electron microscopy (TEM). The mesoporous $TiO_2$ are prepared by PCZ-r-PEG, glucose, water in tertrahydrofuran solution at $150^{\circ}C$ for 12 h and the $TiO_2$ microspheres are calcined at $550^{\circ}C$ for 30 min to further crystallize and organic residue are removed. Morphology and crystallization phase is characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) respectively. The mesoporous $TiO_2$ crystallized in pure anatase phase with diameter of $300{\pm}20nm$.

양친성 PCZ-r-PEG 랜덤 공중합체를 기반으로 한 수열합성법을 통해 자가조립된 메조기공 이산화티타늄 마이크로 스피어를 합성하였다. 중합된 PCZ-r-PEG는 푸리에 변환 적외분광법(fourier transform infrared spectroscopy, FT-IR), 핵자기공명(nuclear magnetic resonance, NMR), 젤 투과 크로마토그래피(gel permeation chromatography, GPC) 그리고 투과전자 현미경(transmission electron microscopy, TEM)을 통해 그 특성이 분석되었다. 다공성 이산화티타늄 입자는 PCZ-r-PEG, 글루코스(glucose), 물을 테트라히드로푸란(tetrahydrofuran, THF) 용액에 분산시킨 뒤 $150^{\circ}C$, 12시간 동안 반응시켰다. 다공성 이산화티타늄 입자의 구조와 결정성 분석을 위해 주사전자현미경(scanning electron microscopy, SEM)과 엑스선 회절(X-ray diffraction, XRD)이 사용되었다.

Keywords

References

  1. L. Yu, F. Lin, W. Xiao, D. Luo, and J. Xi, "CNT@polydopamine embedded mixed matrix membranes for high-rate and long-life vanadium flow batteries", J. Membr. Sci., 549, 411 (2018). https://doi.org/10.1016/j.memsci.2017.12.043
  2. S. Quan, S. W. Li, Y. C. Xiao, and L. Shao, "$CO_2$-selective mixed matrix membranes (MMMs) containing graphene oxide (GO) for enhancing sustainable $CO_2$ capture", Int. J. Greenh. Gas Con., 56, 22 (2017). https://doi.org/10.1016/j.ijggc.2016.11.010
  3. A. E. Amooghin, M. Omidkhah, and A. Kargari, "Enhanced $CO_2$ transport properties of membranes by embedding nano-porous zeolite particles into Matrimid$^{(R)}$ 5218 matrix", RSC Adv., 5, 8552 (2015). https://doi.org/10.1039/C4RA14903C
  4. J. Kim, Q. Fu, K. Xie, J. M. Scofield, S. E. Kentish, and G. G. Qiao, "$CO_2$ separation using surface- functionalized $SiO_2$ nanoparticles incorporated ultra-thin film composite mixed matrix membranes for post-combustion carbon capture", J. Membr. Sci., 515, 54 (2016). https://doi.org/10.1016/j.memsci.2016.05.029
  5. X. Y. Chen, H. Vinh-Thang, D. Rodrigue, and S. Kaliaguine, "Effect of macrovoids in nano-silica/polyimide mixed matrix membranes for high flux $CO_2$/$CH_4$ gas separation", RSC Adv., 4, 12235 (2014). https://doi.org/10.1039/c3ra47208f
  6. M. P. Pileni, "Nanocrystal self-assemblies: Fabrication and collective properties", J. Phys. Chem. B, 105, 3358 (2001). https://doi.org/10.1021/jp0039520
  7. B. Kim, S. L. Tripp, and A. Wei, "Self-organization of large gold nanoparticle arrays", J. Am. Chem. Soc., 123, 7955 (2001). https://doi.org/10.1021/ja0160344
  8. M. M. Momeni and Y. Ghayeb, "Photoelectrochemical water splitting on chromium-doped titanium dioxide nanotube photoanodes prepared by single-step anodizing", J. Alloys Compds., 637, 393 (2015). https://doi.org/10.1016/j.jallcom.2015.02.137
  9. G. Fu, G. Wei, Y. Yang, W. C. Xiang, and N. Qiao, "Facile synthesis of Fe-doped titanate nanotubes with enhanced photocatalytic activity for castor oil oxidation", J. Nanomat., 2013, 4 (2013).
  10. S. Khan, I. A. Qazi, I. Hashmi, M. A. Awan, and N. S. Zaidi, "Synthesis of silver-doped titanium $TiO_2$ powder-coated surfaces and its ability to inactivate Pseudomonas aeruginosa and Bacillus subtilis", J. Nanomater., 2013, 8 (2013).
  11. K. Liu, S. Lin, J. Liao, N. Pan, and M. Zeng, "Synthesis and characterization of hierarchical structured $TiO_2$ nanotubes and their photocatalytic performance on methyl orange", J. Nanomat., 2015, 8 (2015).
  12. S. Pan, Y. Zhao, G. Huang, J. Wang, S. Baunack, T. Gemming, M. Li, L. Zheng, O. G. Schmidt, and Y. Mei, "Highly photocatalytic $TiO_2$ interconnected porous powder fabricated by sponge templated atomic layer deposition", Nanotechnol., 26, 364001 (2015). https://doi.org/10.1088/0957-4484/26/36/364001
  13. F. Liu, C.-L. Liu, B. Hu, W.-P. Kong, and C.-Z. Qi, "High temperature hydrothermal synthesis of crystalline mesoporous $TiO_2$ with superior photocatalytic activities", Appl. Surf. Sci., 258, 7448 (2012). https://doi.org/10.1016/j.apsusc.2012.04.059
  14. H. Mehranpour, M. Askari, M. S. Ghamsari, and H. Farzalibeik, "Study on the phase transformation kinetics of sol-gel drived $TiO_2$ nanoparticles", J. Nanomat., 2010, 5 (2010).
  15. G. Cappelletti, S. Ardizzone, F. Spadavecchia, D. Meroni, and I. Biraghi, "Mesoporous titania nanocrystals by hydrothermal template growth", J. Nanomat., 2011, 9 (2011).
  16. T. Xu, H. Zheng, P. Zhang, W. Lin, and Y. Sekiguchi, "Hydrothermal preparation of nanoporous $TiO_2$ films with exposed {001} facets and superior photocatalytic activity", J. Mater. Chem. A, 3, 19115 (2015). https://doi.org/10.1039/C5TA02640G
  17. H. A. Hamad, M. M. Abd El-latif, A. B. Kashyout, W. A. Sadik, and M. Y. Feteha, "Influence of calcination temperature on the physical properties of nano-titania prepared by sol gel/hydrothermal method", Russ. J. Phys. Chem. A, 89, 1896 (2015). https://doi.org/10.1134/S0036024415100143
  18. M. M. Mohamed, W. A. Bayoumy, M. Khairy, and M. A. Mousa, "Synthesis of micro-mesoporous $TiO_2$ materials assembled via cationic surfactants: Morphology, thermal stability and surface acidity characteristics", Micropor. Mesopor. Mat., 103, 174 (2007). https://doi.org/10.1016/j.micromeso.2007.01.052
  19. B. Sun, G. Zhou, C. Shao, B. Jiang, J. Pang, and Y. Zhang, "Spherical mesoporous $TiO_2$ fabricated by sodium dodecyl sulfate-assisted hydrothermal treatment and its photocatalytic decomposition of papermaking wastewater", Powder Technol., 256, 118 (2014). https://doi.org/10.1016/j.powtec.2014.01.094
  20. A. A. Ismail and D. W. Bahnemannb, "Mesoporous titania photocatalysts: Preparation, characterization and reaction mechanisms", J. Mater. Chem., 21, 11686 (2011). https://doi.org/10.1039/c1jm10407a
  21. J. Yu, H. Guo, S. A. Davis, and S. Mann, "Fabrication of hollow inorganic microspheres by chemically induced self-transformation", Adv. Funct. Mater., 16, 2035 (2006). https://doi.org/10.1002/adfm.200600552
  22. J. Yu, S. Liu, and H. Yu, "Microstructures and photoactivity of mesoporous anatase hollow microspheres fabricated by fluoride-mediated self-transformation", J. Catalysis, 249, 59 (2007). https://doi.org/10.1016/j.jcat.2007.03.032
  23. G. Xi, S. Ouyang, and J. Ye, "General synthesis of hybrid $TiO_2$ mesoporous "French Fries" toward improved photocatalytic conversion of $CO_2$ into hydrocarbon fuel: A case of $TiO_2$/ZnO", Chem. Eur. J., 17, 9057 (2011). https://doi.org/10.1002/chem.201100580
  24. X. Lu, F. Huang, X. Mou, Y. Wang, and F. Xu, "A general preparation strategy for hybrid $TiO_2$ hierarchical spheres and their enhanced solar energy utilization efficiency", Adv. Mater., 22, 3719 (2010). https://doi.org/10.1002/adma.201001008
  25. D. K. Roh, S. J. Kim, W. S. Chi, J. K. Kim, and J. H. Kim, "Dual-functionalized mesoporous $TiO_2$ hollow nanospheres for improved $CO_2$ separation membranes", Chem. Commun., 50, 5717 (2014). https://doi.org/10.1039/C4CC00513A
  26. G. D. Cheng, L. Cao, F. Huang, P. Imperia, Y.-B. Cheng, and R. A. Caruso, "Synthesis of monodisperse mesoporous titania beads with controllable diameter, high surface areas and variable pore diameter (14-23 nm)", J. Am. Chem. Soc., 132, 4438 (2010). https://doi.org/10.1021/ja100040p
  27. Q.-Q. Cheng, Y. Cao, L. Yang, P.-P. Zhang, K. Wang, and H.-J. Wang, "Synthesis of titania microspheres with hierarchical structures and high photocatalytic activity by using nonanoic acid as the structure-directing agent", Mater. Lett., 65, 2833 (2011). https://doi.org/10.1016/j.matlet.2011.05.073
  28. C. Tian, Z. Zhang, J. Hou, and N. Luo, "Surfactant/copolymer template hydrothermal synthesis of thermally stable, mesoporous $TiO_2$ from $TiOSO_4$", Mater. Lett., 62, 77 (2008). https://doi.org/10.1016/j.matlet.2007.04.092
  29. P. W. Morgan, "Linear condensation polymers from phenolphthalein and related compounds", J. Polym. Sci. A, 2, 437 (1964).
  30. J. A. Moore and T. Tannahill, "Homo- and co-polycarbonates and blends derived from diphenolic acid", High Perform. Polym., 13, 305 (2001). https://doi.org/10.1088/0954-0083/13/2/326
  31. W. B. Kim and J. S. Lee, "Comparison of polycarbonate precursors synthesized from catalytic reactions of bisphenol-A with diphenyl carbonate, dimethyl carbonate, or carbon monoxide", J. Appl. Polym. Sci., 86, 937 (2002). https://doi.org/10.1002/app.11026
  32. B. Woo and K. Y. Choi, "Melt polycondensation of bisphenol A polycarbonate by a forced gas sweeping process", Ind. Eng. Chem. Res., 40, 1312 (2001). https://doi.org/10.1021/ie000908y
  33. S. J. Sun, K. Y. Hsu, and T. C. Chang, "Thermotropic liquid crystalline polycarbonates. VI. Synthesis and properties of fully aromatic liquid crystalline polycarbonates by interfacial or solution polycondensation", Polym. J., 29, 25 (1997). https://doi.org/10.1295/polymj.29.25
  34. S. J. Sun, Y. C. Liao, and T. C. Chang, "Studies on the synthesis and properties of thermotropic liquid crystalline polycarbonates. VII. Liquid crystalline polycarbonates and poly(ester-carbonate)s derived from various mesogenic groups", J. Polym. Sci. A, 38, 1852 (2000). https://doi.org/10.1002/(SICI)1099-0518(20000515)38:10<1852::AID-POLA720>3.0.CO;2-J
  35. M. J. Marks, S. Munjal, S. Namhata, D. C. Scott, F. Bosscher, J. A. De Letter, and B. Klumperman, "Randomly branched bisphenol A polycarbonates. I. Molecular weight distribution modeling, interfacial synthesis, and characterization", J. Polym. Sci. A Polym. Chem., 38, 560 (2000). https://doi.org/10.1002/(SICI)1099-0518(20000201)38:3<560::AID-POLA21>3.0.CO;2-N
  36. B. D. Cullity, "Elements of x-ray diffraction", Addison-Wesley Pub. (1978).