• Title/Summary/Keyword: Infrared diode

Search Result 123, Processing Time 0.027 seconds

An Experimental Study on Real Time CO Concentration Measurement of Combustion Gas in LPG/Air Flame Using TDLAS (TDLAS를 이용한 LPG/공기 화염 연소가스의 실시간 CO 농도 측정에 관한 연구)

  • So, Sunghyun;Park, Daegeun;Park, Jiyeon;Song, Aran;Jeong, Nakwon;Yoo, Miyeon;Hwang, Jungho;Lee, Changyeop
    • Clean Technology
    • /
    • v.25 no.4
    • /
    • pp.316-323
    • /
    • 2019
  • In order to enhance combustion efficiency and reduce atmosphere pollutants, it is essential to measure carbon monoxide (CO) concentration precisely in combustion exhaust. CO is the important gas species regarding pollutant emission and incomplete combustion because it can trade off with NOx and increase rapidly when incomplete combustion occurs. In the case of a steel annealing system, CO is generated intentionally to maintain the deoxidation atmosphere. However, it is difficult to measure the CO concentration in a combustion environment in real-time, because of unsteady combustion reactions and harsh environment. Tunable Diode Laser Absorption Spectroscopy (TDLAS), which is an optical measurement method, is highly attractive for measuring the concentration of certain gas species, temperature, velocity, and pressure in a combustion environment. TDLAS has several advantages such as sensitive, non-invasive, and fast response, and in-situ measurement capability. In this study, a combustion system is designed to control the equivalence ratio. Also, the combustion exhaust gases are produced in a Liquefied Petroleum Gas (LPG)/air flame. Measurement of CO concentration according to the change of equivalence ratio is confirmed through TDLAS method and compared with the simulation based on Voigt function. In order to measure the CO concentration without interference from other combustion products, a near-infrared laser at 4300.6 cm-1 was selected.

Development of Passive Millimeter-wave Security Screening System (수동 밀리미터파 보안 검색 시스템 개발)

  • Yoon, Jin-Seob;Jung, Kyung Kwon;Chae, Yeon-Sik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.7
    • /
    • pp.138-143
    • /
    • 2016
  • The designed and fabricated millimeter-wave security screening system receives radiation energy from an object and a human body. The imaging system consist of sixteen array antennas, sixteen four-stage LNAs, sixteen detectors, an infrared camera, a CCD camera, reflector, and a focusing lens. This system requires high sensitivity and wide bandwidth to detect the input thermal noise. The LNA module of the system has been measured to have 65.8 dB in average linear gain and 82 GHz~102 GHz in bandwidth to enhance the sensitivity for thermal noise, and to receive it over a wide bandwidth. The detector is used for direct current (DC) output translation of millimeter-wave signals with a zero bias Schottky diode. The lens and front-end of the millimeter-wave sensor are important in the system to detect the input thermal noise signal. The frequency range in the receiving sensitivity of the detectors was 350 to 400 mV/mW at 0 dBm (1 mW) input power. The developed W-band imaging system is effective for detecting and identifying concealed objects such as metal or plastic.

A $64\times64$ IRFPA CMOS Readout IC for Uncooled Thermal Imaging (비냉각 열상장비용 $64\times64$ IRFPA CMOS Readout IC)

  • 우회구;신경욱;송성해;박재우;윤동한;이상돈;윤태준;강대석;한석룡
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.5
    • /
    • pp.27-37
    • /
    • 1999
  • A CMOS ReadOut Integrated Circuit (ROlC) for InfraRed Focal Plane Array (IRFPA) detector is presented, which is a key component in uncooled thermal imaging systems. The ROIC reads out signals from $64\times64$ Barium Strontium Titanate (BST) infrared detector array, then outputs pixel signals sequentially after amplifying and noise filtering. Various design requirements and constraints have been considered including impedance matching, low noise, low power dissipation and small detector pitch. For impedance matching between detector and pre~amplifier, a new circuit based on MOS diode structure is devised, which can be easily implemented using standard CMOS process. Also, tunable low pass filter with single~pole is used to suppress high frequency noise. In additions, a clamping circuit is adopted to enhance the signal~to-noise ratio of the readout output signals. The $64\times64$ IRFPA ROIC is designed using $0.65-\mu\textrm{m}$ 2P3M (double poly, tripple metal) N~Well CMOS process. The core part of the chip contains 62,000 devices including transistors, capacitors and resistors on an area of about $6.3-mm\times6.7-mm$.

  • PDF

Study on Fiber Laser Annealing of p-a-Si:H Deposition Layer for the Fabrication of Interdigitated Back Contact Solar Cells (IBC형 태양전지 제작을 위한 p-a-Si:H 증착층의 파이버 레이저 가공에 관한 연구)

  • Kim, Sung-Chul;Lee, Young-Seok;Han, Kyu-Min;Moon, In-Yong;Kwon, Tae-Young;Kyung, Do-Hyun;Kim, Young-Kuk;Heo, Jong-Kyu;Yoon, Ki-Chan;Yi, Jun-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.430-430
    • /
    • 2008
  • Using multi plasma enhanced chemical vapor deposition system (Multi-PECVD), p-a-Si:H deposition layer as a $p^+$ region which was annealed by laser (Q-switched fiber laser, $\lambda$ = 1064 nm) on an n-type single crystalline Si (100) plane circle wafer was prepared as new doping method for single crystalline interdigitated back contact (IBC) solar cells. As lots of earlier studies implemented, most cases dealt with the excimer (excited dimer) laserannealing or crystallization of boron with the ultraviolet wavelength range and $10^{-9}$ sec pulse duration. In this study, the Q-switched fiber laser which has higher power, longer wavelength of infrared range ($\lambda$ = 1064 nm) and longer pulse duration of $10^{-8}$ sec than excimer laser was introduced for uniformly deposited p-a-Si:H layer to be annealed and to make sheet resistance expectable as an important process for IBC solar cell $p^+$ layer on a polished n-type Si circle wafer. A $525{\mu}m$ thick n-type Si semiconductor circle wafer of (100) plane which was dipped in a buffered hydrofluoric acid solution for 30 seconds was mounted on the Multi-PECVD system for p-a-Si:H deposition layer with the ratio of $SiH_4:H_2:B_2H_6$ = 30:120:30, at $200^{\circ}C$, 50 W power, 0.2 Torr pressure for 20 minutes. 15 mm $\times$ 15 mm size laser cut samples were annealed by fiber laser with different sets of power levels and frequencies. By comparing the results of lifetime measurement and sheet resistance relation, the laser condition set of 50 mm/s of mark speed, 160 kHz of period, 21 % of power level with continuous wave mode of scanner lens showed the features of small difference of lifetime and lowering sheet resistance than before the fiber laser treatment with not much surface damages. Diode level device was made to confirm these experimental results by measuring C-V, I-V characteristics. Uniform and expectable boron doped layer can play an important role to predict the efficiency during the fabricating process of IBC solar cells.

  • PDF

A Indoor Management System using Raspberry Pi (라즈베리 파이를 이용한 실내관리 시스템)

  • Jeong, Soo;Lee, Jong Jin;Jung, Won Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.745-752
    • /
    • 2016
  • In the era of the Internet of Things, where all physical objects are connected to the Internet, we suggest a remote control system using a Raspberry Pi single-board computer with ZigBee, which can turn an indoor light-emitting diode (LED) and a multiple-tap on and off, and with a smart phone can control the brightness of the LED as well as an electronic door lock. By connecting an infrared (IR) transmitter module to the Raspberry Pi, we can control home appliances, such as an air conditioner, and we can also monitor indoor images, indoor temperatures, and illumination by using a smart phone app. We developed a method of finding out IR transmission codes required for remote-controllable appliances with an AVR micro-controller. We suggest a method to remotely open and shut an office door by novating the door lock. The brightness level of an LED (between 0 and 10) can be controlled through a PWM signal generated by an ATmega88 microcontroller. A mutiple-tap is controlled using an ATmega32, a photo-coupler, and a TRIAC. The signals for measured temperature and illumination are converted from analog to digital by using the ATtiny44A microcontroller transmitting to a Raspberry Pi through SPI communication. Then, we connect a camera to the CSI head of the Raspberry Pi. We can turn on the smart multiple-tap for a certain period of time, or we can schedule the multi-tap to turn on at a specific time. To reduce standby power, people usually pull out a power code from multiple-taps or turn off a switch. Our method helps people do the same thing with a smart phone, if they are away from home.

High-power Operation of a Yb Fiber Laser at 1018 nm (1018 nm 파장의 고출력 Yb 광섬유 레이저)

  • Oh, Ye Jin;Park, Hye Mi;Park, Jong Seon;Park, Eun Ji;Kim, Jin Phil;Jeong, Hoon;Kim, Ji Won;Kim, Tae Hyoung;Jeong, Seong Mook;Kim, Ki Hyuck;Yang, Hwan Seok
    • Korean Journal of Optics and Photonics
    • /
    • v.32 no.5
    • /
    • pp.209-214
    • /
    • 2021
  • High-power continuous-wave operation of a Yb-doped double-clad fiber laser at 1018 nm, pumped by high-power diode lasers at 976 nm, is reported. Based on numerical calculation of the gain and laser signal power along the length of the Yb fiber, it is found that robust operation at 1018 nm can be achieved for a high Yb3+-ion excitation density greater than 11.5%, accompanied by high suppression of the feedback from the fiber's end facet. The Yb fiber laser constructed in house yields 626 W of continuous-wave output at 1018 nm for 729 W of incident pump power, corresponding to a slope efficiency of 86.6%. The prospect for power scaling is considered.

Phytochemical analysis of Panax species: a review

  • Yang, Yuangui;Ju, Zhengcai;Yang, Yingbo;Zhang, Yanhai;Yang, Li;Wang, Zhengtao
    • Journal of Ginseng Research
    • /
    • v.45 no.1
    • /
    • pp.1-21
    • /
    • 2021
  • Panax species have gained numerous attentions because of their various biological effects on cardiovascular, kidney, reproductive diseases known for a long time. Recently, advanced analytical methods including thin layer chromatography, high-performance thin layer chromatography, gas chromatography, high-performance liquid chromatography, ultra-high performance liquid chromatography with tandem ultraviolet, diode array detector, evaporative light scattering detector, and mass detector, two-dimensional high-performance liquid chromatography, high speed counter-current chromatography, high speed centrifugal partition chromatography, micellar electrokinetic chromatography, high-performance anion-exchange chromatography, ambient ionization mass spectrometry, molecularly imprinted polymer, enzyme immunoassay, 1H-NMR, and infrared spectroscopy have been used to identify and evaluate chemical constituents in Panax species. Moreover, Soxhlet extraction, heat reflux extraction, ultrasonic extraction, solid phase extraction, microwave-assisted extraction, pressurized liquid extraction, enzyme-assisted extraction, acceleration solvent extraction, matrix solid phase dispersion extraction, and pulsed electric field are discussed. In this review, a total of 219 articles published from 1980 to 2018 are investigated. Panax species including P. notoginseng, P. quinquefolius, sand P. ginseng in the raw and processed forms from different parts, geographical origins, and growing times are studied. Furthermore, the potential biomarkers are screened through the previous articles. It is expected that the review can provide a fundamental for further studies.

Measurement of Sulfur Dioxide Concentration Using Wavelength Modulation Spectroscopy With Optical Multi-Absorption Signals at 7.6 µm Wavelength Region (7.6 µm 파장 영역의 다중 광 흡수 신호 파장 변조 분광법을 이용한 이산화황 농도 측정)

  • Song, Aran;Jeong, Nakwon;Bae, Sungwoo;Hwang, Jungho;Lee, Changyeop;Kim, Daehae
    • Clean Technology
    • /
    • v.26 no.4
    • /
    • pp.293-303
    • /
    • 2020
  • According to the World Health Organization (WHO), air pollution is a typical health hazard, resulting in about 7 million premature deaths each year. Sulfur dioxide (SO2) is one of the major air pollutants, and the combustion process with sulfur-containing fuels generates it. Measuring SO2 generation in large combustion environments in real time and optimizing reduction facilities based on measured values are necessary to reduce the compound's presence. This paper describes the concentration measurement for SO2, a particulate matter precursor, using a wavelength modulation spectroscopy (WMS) of tunable diode laser absorption spectroscopy (TDLAS). This study employed a quantum cascade laser operating at 7.6 ㎛ as a light source. It demonstrated concentration measurement possibility using 64 multi-absorption lines between 7623.7 and 7626.0 nm. The experiments were conducted in a multi-pass cell with a total path length of 28 and 76 m at 1 atm, 296 K. The SO2 concentration was tested in two types: high concentration (1000 to 5000 ppm) and low concentration (10 ppm or less). Additionally, the effect of H2O interference in the atmosphere on the measurement of SO2 was confirmed by N2 purging the laser's path. The detection limit for SO2 was 3 ppm, and results were compared with the electronic chemical sensor and nondispersive infrared (NDIR) sensor.

Comparative evaluation of photobiomodulation therapy at 660 and 810 nm wavelengths on the soft tissue local anesthesia reversal in pediatric dentistry: an in-vivo study

  • Ankita Annu;Sujatha Paranna;Anil T. Patil;Sandhyarani B.;Adhithi Prakash;Renuka Rajesh Bhurke
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.23 no.4
    • /
    • pp.229-236
    • /
    • 2023
  • Background: Local anesthesia has been reliably used to control pain during dental procedures and is important in pediatric dentistry. However, children occasionally complain of prolonged numbness after dental treatment, leading to several problems. Studies conducted to reverse the effect of local anesthesia using phentolamine mesylate and photobiomodulation therapy (PBM) are encouraging but limited. PBM is a type of light therapy that utilizes visible and near-infrared non-ionizing electromagnetic spectral light sources. Hence, this study used this modality to compare the reversal of local anesthesia at two different wavelengths. This study compared the effect of PBM at 660 and 810 nm wavelengths on the reversal of soft tissue local anesthesia using a diode LASER in pediatric dentistry. Method: Informed consent and assent were obtained, and the participants were then divided randomly into three groups of 20 children each: control group-without LASER irradiation, LASER irradiation at 660 nm, and LASER irradiation at 810 nm. Sixty children aged 4-8 years with deciduous mandibular molars indicated for pulp therapy were administered an inferior alveolar nerve block. After 45 min of injection, a duration that was similar to the approximate duration of treatment, they were exposed to 660- and 810-nm LASER irradiation according to their groups until reversal of local anesthesia was achieved. The control group did not undergo LASER irradiation. The reversal of the soft tissue local anesthetic effect was evaluated using palpation and pin prick tests every 15 min, and the LASER irradiation cycle continued until reversal of the soft tissue local anesthesia was achieved. Results: A significant reduction of 55.5 min (27.6%) in the mean soft tissue local anesthesia reversal time was observed after the application of 810 nm wavelength PBM and 69 min (34.7%) after 660 nm wavelength LASER irradiation. Conclusion: PBM with a 660 nm wavelength was more effective in reducing the mean soft tissue local anesthesia reversal duration, and thus can be used as a reversal agent for soft tissue local anesthesia in pediatric dentistry.

Comparison of the degree of conversion of light-cured resin cement in regard to porcelain laminate thickness, light source and curing time using FT-IR (도재 라미네이트 두께와 광원 및 광조사 시간에 따른 광중합형 레진 시멘트의 FT-IR을 이용한 중합도 비교)

  • Yuh, Chi-Sung;Kim, Jee-Hwan;Kim, Sun-Jai;Lee, Yong-Keun;Shim, June-Sung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.4
    • /
    • pp.416-423
    • /
    • 2009
  • Statement of problem: The degree of light attenuation at the time of cementation of the PLV restoration depends on characteristics such as thickness, opacity and shade of the restorations, which interfere with light transmittance and, as a result, may decrease the total energy reaching the luting cement. Purpose: The purpose of this study was to compare the degree of conversion of light-cured resin cements measuring by FT-IR in regard to different thickness, light devices and curing time. Material and methods: In the control group, a clear slide glass (1.0 mm) was positioned between the light cured resin cement and light source. The specimens of ceramics were made with IPS Empress Esthetic. The ceramics were fabricated with varying thicknesses-0.5, 1.0, 1.5 mm with shade ETC1. Rely $X^{TM}$ Veneer with shade A3, light-cured resin cement, was used. Light-activation was conducted through the ceramic using a quartz tungsten halogen curing unit, a light emitting diode curing unit and a plasma arc curing unit. The degree of conversion of the light-cured resin cement was evaluated using FT-IR and OMNIC. One-way ANOVA and Tukey HSD test were used for statistical analysis ($\alpha$< .05). Results: The degree of conversion (DC) of photopolymerization using QTH and LED was higher than results of using PAC in the control group. After polymerization using QTH and LED, the DC results from the different ceramic thickness- 0.5 mm, 1.0 mm, 1.5 mm- did not show a significant difference when compared with those of control group. However, the DC for polymerization using PAC in the 1.5mm ceramic group showed significantly lower DC than those of the control group and 0.5 mm ceramic group (P<.05). At 80s and 160s, the DC of light-cured resin cement beneath 1.0 mm ceramic using LED was significantly higher than at 20s (P<.05). Conclusion: Within the limitation of this study, when adhering PLV to porcelain with a thickness between 0.5-1.5 mm, the use of PAC curing units were not considered however, light cured resin cements were effective when cured for over 40 seconds with QTH or LED curing units. Also, when curing the light cured resin cements with LED, the degree of polymerization was not proportional with the curing time. Curing exceeding a certain curing time, did not significantly affect the degree of polymerization.