• Title/Summary/Keyword: Infrared analysis system

Search Result 432, Processing Time 0.028 seconds

Error Analysis of Three Types of Satellite-observed Surface Skin Temperatures in the Sea Ice Region of the Northern Hemisphere (북반구 해빙 지역에서 세 종류 위성관측 표면온도에 대한 오차분석)

  • Kang, Hee-Jung;Yoo, Jung-Moon
    • Journal of the Korean earth science society
    • /
    • v.36 no.2
    • /
    • pp.139-157
    • /
    • 2015
  • We investigated the relative errors of satellite-observed Surface Skin Temperature (SST) data caused by sea ice in the northern hemispheric ocean ($30-90^{\circ}N$) during April 16-24, 2003-2014 by intercomparing MODerate Resolution Imaging Spectroradiometer (MODIS) Ice Surface Temperature (IST) data with two types of Atmospheric Infrared Sounder (AIRS) SST data including one with the AIRS/Advanced Microwave Sounding Unit-A (AMSU) and the other with 'AIRS only'. The MODIS temperatures, compared to the AIRS/AMSU, were systematically up to ~1.6 K high near the sea ice boundaries but up to ~2 K low in the sea ice regions. The main reason of the difference of skin temperatures is that the MODIS algorithm used infrared channels for the sea ice detection (i.e., surface classification), while microwave channels were additionally utilized in the AIRS/AMSU. The 'AIRS only' algorithm has been developed from NASA's Goddard Space Flight Center (NASA/GSFC) to prepare for the degradation of AMSU-A by revising part of the AIRS/AMSU algorithm. The SST of 'AIRS only' compared to AIRS/AMSU showed a bias of 0.13 K with RMSE of 0.55 K over the $30-90^{\circ}N$ region. The difference between AIRS/AMSU and 'AIRS only' was larger over the sea ice boundary than in other regions because the 'AIRS only' algorithm utilized the GCM temperature product (NOAA Global Forecast System) over seasonally-varying frozen oceans instead of the AMSU microwave data. Three kinds of the skin temperatures consistently showed significant warming trends ($0.23-0.28Kyr^{-1}$) in the latitude band of $70-80^{\circ}N$. The systematic disagreement among the skin temperatures could affect the discrepancies of their trends in the same direction of either warming or cooling.

In-line Monitoring of Fluid-Bed Blending Process for Pharmaceutical Powders using Fiber Optics Probe and NIR Spectroscopy (광섬유-탐침과 근적외선(NIR) 분광기를 이용한 약제분말 유동층 혼합공정의 인라인 모니터링 연구)

  • Park, Cho-Rong;Kim, Ah-Young;Lee, Min-Jeong;Lee, Hea-Eun;Seo, Da-Young;Shin, Sang-Mun;Choi, Yong-Sun;Kwon, Byung-Soo;Bang, Kyu-Ho;Kang, Ho-Kyung;Kim, Chong-Kook;Lee, Sang-Kil;Choi, Guang-Jin
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.1
    • /
    • pp.29-36
    • /
    • 2009
  • Since the quality of final products is significantly affected by the homogeneity of powder mixture, the powder blending process has been regarded as one of the critical pharmaceutical unit processes, especially for solid dosage forms. Accordingly, the monitoring to determine a blending process' end-point based on a faster and more accurate in-line/on-line analysis has attracted enormous attentions recently. Among various analytical tools, NIR (near-infrared) spectroscopy has been extensively studied for PAT (process analytical technology) system due to its many advantages. In this study, NIR spectroscopy was employed with an optical fiber probe for the in-line monitoring of fluid-bed blending process. The position of the probe, the ratio of binary powder mixture, the powder size differential and the back-flush period of the shaking bag were examined as principal process parameters. During the blending process of lactose and mannitol powders, NIR spectra were collected, corrected, calibrated and analyzed using MSC and PLS method, respectively. The probe position was optimized. A reasonable end-point was predicted as 1,500 seconds based on 5% RSD value. As a consequence, it was demonstrated that the blending process using a fluid-bed processor has several advantages over other methods, and the application of NIRS with an optical fiber probe as PAT system for a fluid-bed blending process could be high feasible.

Comparison of Biomechanical Characteristics of Rowing Performance between Elite and Non-Elite Scull Rowers: A Pilot Study

  • Kim, Jin-Sun;Cho, Hanyeop;Han, Bo-Ram;Yoon, So-Ya;Park, Seonhyung;Cho, Hyunseung;Lee, Joohyeon;Lee, Hae-Dong
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.1
    • /
    • pp.21-30
    • /
    • 2016
  • Objective: This study aimed to examine the characteristics of joint kinematics and synchronicity of rowing motion between elite and non-elite rowers. Methods: Two elite and two non-elite rowers performed rowing strokes (3 trials, 20 strokes in each trial) at three different stroke rates (20, 30, 40 stroke/min) on two stationary rowing ergometers. The rowing motions of the rowers were captured using a 3-dimensional motion analysis system (8-infrared camera VICON system, Oxford, UK). The range of motion (RoM) of the knee, hip, and elbow joints on the sagittal plane, the lead time ($T_{Lead}$) and the drive time $T_{Drive}$) for each joint, and the elapsed time for the knee joint to maintain a fully extended position ($T_{Knee}$) during the stroke were analyzed and compared between elite and non-elite rowers. Synchronicity of the rowing motion within and between groups was examined using coefficients of variation (CV) of the $T_{Drive}$ for each joint. Results: Regardless of the stroke rate, the RoM of all joints were greater for the elite than for non-elite rowers, except for the RoMs of the knee joint at 30 stroke/min and the elbow joint at 40 stroke/min (p < .05). Although the $T_{Lead}$ at all stroke rates were the same between the groups, the $T_{Drive}$ for each joint was shorter for the elite than for the non-elite rowers. During the drive phase, elite rowers kept the fully extended knee joint angle longer than the non-elite rowers (p < .05). The CV values of the TDrive within each group were smaller for the elite compared with non-elite rowers, except for the CV values of the hip at all stroke/min and elbow at 40 stroke/min. Conclusion: The elite, compared with non-elite, rowers seem to be able to perform more powerful and efficient rowing strokes with large RoM and a short $T_{Drive}$ with the same $T_{Lead}$.

A Biomechanics-Based Ergonomic Analysis for Footware Development (풋웨어 개발을 위한 생체역학 기반 인간공학적 분석 : B-boy 신발 개발을 중심으로)

  • Hah, Chong-Ku;Jang, Young-Kwan;Kim, Jin-Hyun
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.8
    • /
    • pp.140-147
    • /
    • 2019
  • The purpose of this study is to find biomechanical parameters for optimal shoes production through an ergonomic usability assessment of five existing types of shoes preferred by B-BOY. Ten experts and ten non-experts participated in the experiment, and 12 infrared cameras (Qualis, Oqus), force plate (Kistler, 9286AA) and foot pressure plate (Zebris Gmbh, Zebris PDM-System) were used to obtain the data. The results of the study are as follows. First, P shoes with a friction coefficient of 0.38 and a free moment of 0.32 N/m/kg are desirable in terms of traction capability and safety. Second, on the cushion, it was found that the N shoes 2.51 N, sec/kg and non-expert, and 2.86 N and sec/kg were suitable. Third, it is deemed appropriate for C shoes with a forefoot average pressure of 10.11 KPa (right), 10.05 KPa (left), and V shoes with a rearfoot average pressure of 8.4 KPa (right) and 8.36 KPa (left). In conclusion, the combination of the structure and material of V shoes should be developed for traction and stability, N shoes for cushion, and walking balance for C and V shoes.

Quantitation of relationship and development of nutrient prediction with vibrational molecular structure spectral profiles of feedstocks and co-products from canola bio-oil processing

  • Alessandra M.R.C.B. de Oliveira;Peiqiang Yu
    • Animal Bioscience
    • /
    • v.36 no.3
    • /
    • pp.451-460
    • /
    • 2023
  • Objective: This program aimed to reveal the association of feed intrinsic molecular structure with nutrient supply to animals from canola feedstocks and co-products from bio-oil processing. The special objective of this study was to quantify the relationship between molecular spectral feature and nutrient availability and develop nutrient prediction equation with vibrational molecular structure spectral profiles. Methods: The samples of feedstock (canola oil seeds) and co-products (meals and pellets) from different bio-oil processing plants in Canada (CA) and China (CH) were submitted to this molecular spectroscopic technique and their protein and carbohydrate related molecular spectral features were associated with the nutritional results obtained through the conventional methods of analyses for chemical and nutrient profiles, rumen degradable and intestinal digestible parameters. Results: The results showed that the spectral structural carbohydrates spectral peak area (ca. 1,487.8 to 1,190.8 cm-1) was the carbohydrate structure that was most significant when related to various carbohydrate parameters of canola meals (p<0.05, r>0.50). And spectral total carbohydrate area (ca. 1,198.5 to 934.3 cm-1) was most significant when studying the various carbohydrate parameters of canola seeds (p<0.05, r>0.50). The spectral amide structures (ca. 1,721.2 to 1,480.1 cm-1) were related to a few chemical and nutrient profiles, Cornell Net Carbohydrate and Protein System (CNCPS) fractions, truly absorbable nutrient supply based on the Dutch protein system (DVE/OEB), and NRC systems, and intestinal in vitro protein-related parameters in co-products (canola meals). Besides the spectral amide structures, α-helix height (ca. 1,650.8 to 1,643.1 cm-1) and β-sheet height (ca. 1,633.4 to 1,625.7 cm-1), and the ratio between them have shown to be related to many protein-related parameters in feedstock (canola oil seeds). Multi-regression analysis resulted in moderate to high R2 values for some protein related equations for feedstock (canola seeds). Protein related equations for canola meals and carbohydrate related equations for canola meals and seeds resulted in weak R2 and low p values (p<0.05). Conclusion: In conclusion, the attenuated total reflectance Fourier transform infrared spectroscopy vibrational molecular spectroscopy can be a useful resource to predict carbohydrate and protein-relates nutritional aspects of canola seeds and meals.

Fabrication of Silicon Quantum Dots in Si3N4 Matrix Using RF Magnetron Co-Sputtering (RF 마그네트론 코스퍼터링을 이용한 Si3N4 매트릭스 내부의 실리콘 양자점 제조연구)

  • Ha, Rin;Kim, Shin-Ho;Lee, Hyun-Ju;Park, Young-Bin;Lee, Jung-Chul;Bae, Jong-Seong;Kim, Yang-Do
    • Korean Journal of Materials Research
    • /
    • v.20 no.11
    • /
    • pp.606-610
    • /
    • 2010
  • Films consisting of a silicon quantum dot superlattice were fabricated by alternating deposition of silicon rich silicon nitride and $Si_3N_4$ layers using an rf magnetron co-sputtering system. In order to use the silicon quantum dot super lattice structure for third generation multi junction solar cell applications, it is important to control the dot size. Moreover, silicon quantum dots have to be in a regularly spaced array in the dielectric matrix material for in order to allow for effective carrier transport. In this study, therefore, we fabricated silicon quantum dot superlattice films under various conditions and investigated crystallization behavior of the silicon quantum dot super lattice structure. Fourier transform infrared spectroscopy (FTIR) spectra showed an increased intensity of the $840\;cm^{-1}$ peak with increasing annealing temperature due to the increase in the number of Si-N bonds. A more conspicuous characteristic of this process is the increased intensity of the $1100\;cm^{-1}$ peak. This peak was attributed to annealing induced reordering in the films that led to increased Si-$N_4$ bonding. X-ray photoelectron spectroscopy (XPS) analysis showed that peak position was shifted to higher bonding energy as silicon 2p bonding energy changed. This transition is related to the formation of silicon quantum dots. Transmission electron microscopy (TEM) and electron spin resonance (ESR) analysis also confirmed the formation of silicon quantum dots. This study revealed that post annealing at $1100^{\circ}C$ for at least one hour is necessary to precipitate the silicon quantum dots in the $SiN_x$ matrix.

Satellite Image Analysis of Convective Cell in the Chuseok Heavy Rain of 21 September 2010 (2010년 9월 21일 추석 호우와 관련된 대류 세포의 위성 영상 분석)

  • Kwon, Tae-Yong;Lee, Jeong-Soon
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.4
    • /
    • pp.423-441
    • /
    • 2013
  • On 21 September 2010, one of Chuseok holidays in Korea, localized heavy rainfalls occurred over the midwestern region of the Korean peninsula. In this study MTSAT-2 infrared and water vapor channel imagery are examined to find out some features which are obvious in each stage of the life cycle of convective cell for this heavy rain event. Also the kinematic and thermodynamic features probably associated with them are investigated. The first clouds related with the Chuseok heavy rain are detected as low-level multicell cloud (brightness temperature: $-15{\sim}0^{\circ}C$) in the middle of the Yellow sea at 1630~1900 UTC on 20 Sept., which are probably associated with the convergence at 1000 hPa. Convective cells are initiated in the vicinity of Shantung peninsula at 1933 UTC 20, which have developed around the edge of the dark region in water vapor images. At two times of 0033 and 0433 UTC 21 the merging of two convective cells happens near midwestern coast of the peninsula and then they have developed rapidly. From 0430 to 1000 UTC 21, key features of convective cell include repeated formation of secondary cell, slow horizontal cloud motion, persistence of lower brightness temperature ($-75{\sim}-65^{\circ}C$), and relatively small cloud size (${\leq}-50^{\circ}C$) of about $30,000km^2$. Radar analysis showed that this heavy rain is featured by a narrow line-shaped rainband with locally heavy rainrate (${\geq}50$ mm/hr), which is located in the south-western edge of the convective cell. However there are no distinct features in the associated synoptic-scale dynamic forcing. After 1000 UTC 21 the convective cell grows up quickly in cloud size and then is dissipated. These satellite features may be employed for very short range forecast and nowcasting of mesoscale heavy rain system.

Analysis of Spatio-Temporal Patterns of Nighttime Light Brightness of Seoul Metropolitan Area using VIIRS-DNB Data (VIIRS-DNB 데이터를 이용한 수도권 야간 빛 강도의 시·공간 패턴 분석)

  • Zhu, Lei;Cho, Daeheon;Lee, Soyoung
    • Journal of Cadastre & Land InformatiX
    • /
    • v.47 no.2
    • /
    • pp.19-37
    • /
    • 2017
  • Visible Infrared Imaging Radiometer Suite Day-Night Band (VIIRS-DNB) data provides a much higher capability for observing and quantifying nighttime light (NTL) brightness in comparison with Defense Meteorological Satellite-Operational Linescan System (DMSP-OLS) data. In South Korea, there is little research on the detection of NTL brightness change using VIIRS-DNB data. This study analyzed the spatial distribution and change of NTL brightness between 2013 and 2016 using VIIRS-DNB data, and detected its spatial relation with possible influencing factors using regression models. The intra-year seasonality of NTL brightness in 2016 was also studied by analyzing the deviation and change clusters, as well as the influencing factors. Results are as follows: 1) The higher value of NTL brightness in 2013 and 2016 is concentrated in Seoul and its surrounding cities, which positively correlated with population density and residential areas, economic land use, and other factors; 2) There is a decreasing trend of NTL brightness from 2013 to 2016, which is obvious in Seoul, with the change of population density and area of industrial buildings as the main influencing factors; 3) Areas in Seoul, and some surrounding areas have high deviation of the intra-year NTL brightness, and 71% of the total areas have their highest NTL brightness in January, February, October, November and December; and 4) Change of NTL brightness between summer and winter demonstrated a significantly positive relation with snow cover area change, and a slightly and significantly negative relation with albedo change.

Effects of Combined Exercise on Injury Risk Factors of Lower Extremity during Landing (아동의 복합운동이 착지 시 하지 손상요인에 미치는 영향)

  • Ha, Sung-He;Yoo, Si-Hyun;Kim, Joo-Nyeon;Gil, Ho-Jong;Ryu, Ji-Seon;Yoon, Suk-Hoon;Park, Sang-Kyoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.2
    • /
    • pp.173-180
    • /
    • 2014
  • The purpose of this study was to investigate the effect of combined exercise on injury risk factors of lower extremity during landing. Ten sports talented athletes participated in this study. Sports talented athletes participated in a combined exercise (sports talented exercise, coordination) for 16 weeks. A three-dimensional motion analysis was performed using eight infrared cameras (sampling rate of 100 Hz), one force plate, and electromyography system (sampling rate of 1000 Hz) during landing. Kinetic, and kinematics analysis including average impulsive force, angle of lower extremity, vertical stiffness, onset of muscle activation were calculated by Matlab2009a software. Paired t-test was performed at alpha=.05. The average impulsive force in landing phase was not statistically significant (t=-.748, p=.474). The hip joint angle was more decreased in post test compared to pre test (E1: t=2.682, p=.025, E2: t=5.609, p=.000, E3: t=2.538, p=.032). The knee joint (E1: t=-.343, p=.739, E2: t=1.319, p=.220, E3: t=.589, p=.570) and ankle joint (E1: t=.081, p=.937, E2: t=.784, p=.453, E3: t=.392, p=.704) angle were tended to decrease after combined exercise. The vertical stiffness was tended to decrease after combined exercise (t=1.972, p=.080). Onset of quadriceps femoris (t=.698, p=.503) and medial gastocnemius (t=1.858, p=.096) were tended to be faster than biceps femoris (t=-.333, p=.747) after combined exercise. Although thses findings were not statistically significant except on a hip joint angle, risk factors of lower extremity such as joint angle, vertical stiffness and onset of quadriceps femoris, medial gastrocnemius were positively changed after the combined exercise but an additional training for improved onset of biceps femoris would be required in the future.

Adsorption Characteristics of Carbon Dioxide on Chitosan/Zeolite Composites (키토산/제올라이트 복합체의 이산화탄소 흡착 특성)

  • Hong, Woong-Gil;Hwang, Kyung-Jun;Jeong, Gyeong-Won;Yoon, Soon-Do;Shim, Wang Geun
    • Applied Chemistry for Engineering
    • /
    • v.31 no.2
    • /
    • pp.179-186
    • /
    • 2020
  • In this study, chitosan/zeolite composites were prepared by using basalt-based zeolite impregnated with aqueous chitosan solution for the adsorptive separation of CO2. The prepared composites were characterized by scanning electron microscopy (SEM), Fourier-transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption analysis. In addition, the adsorption equilibrium isotherms for CO2 and N2 were measured at 298 K using a volumetric adsorption system, and the results were analyzed by applying adsorption isotherm equations (Langmuir, Freundlich, and Sips) and energy distribution function. It was found that CO2 adsorption capacities were well correlated with the structural characteristics of chitosan and zeolite, and the ratio of elements [N/C, Al/(Si + Al)] formed on the surface of the composite. Moreover, the CO2/N2 adsorption selectivity was calculated under the mixture conditions of 15 V : 85 V, 50 V : 50 V, and 85 V : 15 V using the Langmuir equation and the ideal adsorption solution theory (IAST).