DOI QR코드

DOI QR Code

Analysis of Spatio-Temporal Patterns of Nighttime Light Brightness of Seoul Metropolitan Area using VIIRS-DNB Data

VIIRS-DNB 데이터를 이용한 수도권 야간 빛 강도의 시·공간 패턴 분석

  • Zhu, Lei (Department of Geography Education, Seoul National University) ;
  • Cho, Daeheon (Department of Geography Education, Catholic Kwandong University) ;
  • Lee, Soyoung (Department of Geography Education, Seoul National University)
  • 주뢰 (서울대학교 지리교육과) ;
  • 조대헌 (가톨릭관동대학교 지리교육과) ;
  • 이소영 (서울대학교 지리교육과)
  • Received : 2017.10.07
  • Accepted : 2017.12.08
  • Published : 2017.12.10

Abstract

Visible Infrared Imaging Radiometer Suite Day-Night Band (VIIRS-DNB) data provides a much higher capability for observing and quantifying nighttime light (NTL) brightness in comparison with Defense Meteorological Satellite-Operational Linescan System (DMSP-OLS) data. In South Korea, there is little research on the detection of NTL brightness change using VIIRS-DNB data. This study analyzed the spatial distribution and change of NTL brightness between 2013 and 2016 using VIIRS-DNB data, and detected its spatial relation with possible influencing factors using regression models. The intra-year seasonality of NTL brightness in 2016 was also studied by analyzing the deviation and change clusters, as well as the influencing factors. Results are as follows: 1) The higher value of NTL brightness in 2013 and 2016 is concentrated in Seoul and its surrounding cities, which positively correlated with population density and residential areas, economic land use, and other factors; 2) There is a decreasing trend of NTL brightness from 2013 to 2016, which is obvious in Seoul, with the change of population density and area of industrial buildings as the main influencing factors; 3) Areas in Seoul, and some surrounding areas have high deviation of the intra-year NTL brightness, and 71% of the total areas have their highest NTL brightness in January, February, October, November and December; and 4) Change of NTL brightness between summer and winter demonstrated a significantly positive relation with snow cover area change, and a slightly and significantly negative relation with albedo change.

VIIRS-DNB 데이터는 기존의 DMSP-OLS 데이터에 비해 야간에 발생하는 빛의 밝기를 측정하는데 더 우수한 성능을 보여준다. 하지만 지금까지 우리나라에서 VIIRS-DNB 데이터를 이용해 야간 빛의 분포 변화를 분석한 연구는 상당히 드물다. 이 연구에서는 우리나라의 수도권을 대상으로 2013~2016년간의 야간 빛의 분포 및 변화 패턴을 파악하고, 공간회귀모델을 통해 그 요인을 분석하였다. 이를 위해 두 시점 간의 변화를 살펴봄은 물론 계절간 변화 양상 또한 함께 분석하였다. 주요한 결과는 다음과 같다. 첫째, 2013년과 2016년 두 시점 모두 야간 빛은 서울과, 인천, 그리고 서울과 인접한 경기도의 도시에 집중되어 인구밀도 및 주거지관련요인, 경제토지이용관련요인 등과의 연관성을 나타내었다. 둘째, 2013년과 2016년을 비교해보면 야간 빛의 강도는 특히 서울에서 약화되는 경향을 보이고 있는데, 이는 인구밀도의 변화 및 산업용 건물의 비중과 관련된 것으로 나타났다. 셋째, 서울, 그리고 인천과 경기도의 주변 지역들은 야간 빛의 계절 변동성이 높게 나타났는데, 겨울(12월, 1월, 2월) 및 가을(10월, 11월)에 빛의 강도가 가장 강하게 나타났다. 넷째, 야간 빛의 계절간 변동은 적설면적 변화와 유의미하게 양적 상관관계 나타났고, 알베도의 변화와 유의미하게 음적 상관관계 나타났다.

Keywords

References

  1. Aubrecht C, Elvidge CD, Eakin CM, Ziskin D , Baugh K. 2009. Coral Reef Risk Assessment Using Dmsp Nighttime Lights-Temporal Trends and Global Perspectives. In ISRSE: 33rd International Symposium on Remote Sensing of Environment. 4-8.
  2. Bennie J, Davies TW, Duffy JP, Inger R, Gaston KJ. 2014. Contrasting Trends in Light Pollution across Europe Based on Satellite Observed Night Time Lights. Scientific Reports. 4:3789.
  3. Chand TRK, Badarinath KVS, Elvidge CD, Tuttle BT. 2009. Spatial Characterization of Electrical Power Consumption Patterns over India Using Temporal DMSP-OLS Night - Time Satellite Data. International Journal of Remote Sensing. 30(3): 647-661. https://doi.org/10.1080/01431160802345685
  4. Cho W, Sung CY, Ki KS. 2014. Characterizing Light Pollution in National Parks during Peak and Off-peak Tourist Seasons Using Nighttime Satellite Images. Korean Journal of Environment and Ecology. 28(4): 484-489. https://doi.org/10.13047/KJEE.2014.28.4.484
  5. Cinzano P, Falchi F, Elvidge CD, Baugh KE. 2000. The Artificial Night Sky Brightness Mapped from DMSP Satellite Operational Linescan System Measurements. Monthly Notices of the Royal Astronomical Society. 318(3): 641-657. https://doi.org/10.1046/j.1365-8711.2000.03562.x
  6. Cinzano P, Falchi F, Elvidge CD. 2001. The First World Atlas of the Artificial Night Sky Brightness. Monthly Notices of the Royal Astronomical Society. 328(3): 689-707. https://doi.org/10.1046/j.1365-8711.2001.04882.x
  7. Elvidge CD, Baugh KE, Kihn EA, Kroehl HW, David ER, Davis CW. 1997. Relation between Satellite Observed Visible-near Infrared Emissions, Population, Economic Activity and Electric Power Consumption. International Journal of Remote Sensing. 18(6): 1373-1379. https://doi.org/10.1080/014311697218485
  8. Elvidge CD, Imhoff ML, Baugh KE, Hobson VR, Nelson I, Safran J, Dietz JB, Tuttle BT. 2001. Night-Time Lights of the World: 1994-1995. ISPRS Journal of Photogrammetry and Remote Sensing. 56(2): 81-99. https://doi.org/10.1016/S0924-2716(01)00040-5
  9. Falchi F, Cinzano P, Elvidge CD, Keith DM, Haim A. 2011. Limiting the Impact of Light Pollution on Human Health, Environment and Stellar Visibility. Journal of environmental management. 92(10): 2714-2722. https://doi.org/10.1016/j.jenvman.2011.06.029
  10. Getis A, Morrison AC, Gray K, Scott TW. 2010. Characteristics of the Spatial Pattern of the Dengue Vector, Aedes Aegypti, in Iquitos, Peru. In Perspectives on Spatial Data Analysis. 203-225.
  11. Getis A, Ord JK. 1992. The Analysis of Spatial Association by Use of Distance Statistics. Geographical Analysis. 24(3): 189-206. https://doi.org/10.1111/j.1538-4632.1992.tb00261.x
  12. Hall DK, Riggs GA. 2007. Accuracy Assessment of the Modis Snow Products. Hydrological Processes. 21(12): 1534-1547. https://doi.org/10.1002/hyp.6715
  13. Han P, Huang J, Li R, Wang L, Hu Y, Wang J, Huang W. 2014. Monitoring Trends in Light Pollution in China Based on Nighttime Satellite Imagery. Remote Sensing. 6(6): 5541-5558. https://doi.org/10.3390/rs6065541
  14. Hillger D, Kopp T, Lee T, Lindsey D, Seaman C, Miller S, Solbrig J, Kidder S, Bachmeier S, Jasmin T. 2013. First-Light Imagery from Suomi NPP VIIRS. Bulletin of the American Meteorological Society. 94(7): 1019-1029. https://doi.org/10.1175/BAMS-D-12-00097.1
  15. Horvath G, Kriska G, Malik P, Robertson B. 2009. Polarized Light Pollution: A New Kind of Ecological Photopollution. Frontiers in Ecology and the Environment. 7(6): 317-325. https://doi.org/10.1890/080129
  16. Huang Q, Yang X, Gao B, Yang Y, Zhao Y. 2014. Application of Dmsp/Ols Nighttime Light Images: A Meta-Analysis and a Systematic Literature Review. Remote Sensing. 6(8): 6844-6866. https://doi.org/10.3390/rs6086844
  17. Inger R, Bennie J, Davies TW, Gaston KJ. 2014. Potential Biological and Ecological Effects of Flickering Artificial Light. PloS one. 9(5): e98631. https://doi.org/10.1371/journal.pone.0098631
  18. Jaturapitpornchai R, Kasetkasem T, Kumazawa I, Rakwatin P, Chanwimaluang T. 2015. A Level-Based Method for Urban Mapping Using Npp-Viirs Nighttime Light Data. In Information and Communication Technology for Embedded Systems (IC-ICTES), 2015 6th International Conference . p. 1-6.
  19. Jiang W, He G, Long T, Wang C, Ni Y and Ma R. 2017. Assessing Light Pollution in China Based on Nighttime Light Imagery. Remote Sensing. 9(2): 135. https://doi.org/10.3390/rs9020135
  20. Kim M. 2014. Outdoor Artificial Light Pollution Change in the Republic of Korea. Journal of the Korean Cartographic Association. 14(1): 49-59.
  21. Kloog I, Haim A, Stevens RG, Barchana M, Portnov BA. 2008. Light at Night Co‐Distributes with Incident Breast but Not Lung Cancer in the Female Population of Israel. Chronobiology international. 25(1): 65-81. https://doi.org/10.1080/07420520801921572
  22. Kloog I, Haim A , Stevens RG, Portnov BA. 2009. Global Co‐Distribution of Light at Night (Lan) and Cancers of Prostate, Colon, and Lung in Men. Chronobiology international. 26(1): 108-125. https://doi.org/10.1080/07420520802694020
  23. Kloog I, Stevens RG, Haim A, Portnov BA. 2010. Nighttime Light Level Co-Distributes with Breast Cancer Incidence Worldwide. Cancer Causes & Control. 21(12): 2059-2068. https://doi.org/10.1007/s10552-010-9624-4
  24. Korea Agency for Infrastructure Technology Advancement, 2017, The Fourth Annual Report on the Development of Opensource Geospatial Software (unpublished).
  25. Lambin EF. 1996. Change Detection at Multiple Temporal Scales: Seasonal and Annual Variatiosin Landscape Variables. Photogrammetric Engineering and Remote Sensing. 62(8): 931-938.
  26. Lee TE, Miller SD, Turk FJ, Schueler C, Julian R, Deyo S, Dills P, Wang S. 2006. The Npoess Viirs Day/Night Visible Sensor. Bulletin of the American Meteorological Society. 87(2): 191-199. https://doi.org/10.1175/BAMS-87-2-191
  27. Levin N. 2017. The Impact of Seasonal Changes on Observed Nighttime Brightness from 2014 to 2015 Monthly VIIRS DNB Composites. Remote Sensing of Environment. 193:150-164. https://doi.org/10.1016/j.rse.2017.03.003
  28. Levin N, Zhang Q. 2017. A Global Analysis of Factors Controlling Viirs Nighttime Light Levels from Densely Populated Areas. Remote Sensing of Environment. 190:366-382. https://doi.org/10.1016/j.rse.2017.01.006
  29. Li X, Zhang R, Huang C, Li D. 2015. Detecting 2014 Northern Iraq Insurgency Using Night-Time Light Imagery. International Journal of Remote Sensing. 36(13): 3446-3458. https://doi.org/10.1080/01431161.2015.1059968
  30. Liu Z, He C, Zhang Q, Huang Q, Yang Y. 2012. Extracting the Dynamics of Urban Expansion in China Using DMSP-OLS Nighttime Light Data from 1992 to 2008. Landscape and Urban Planning. 106(1): 62-72. https://doi.org/10.1016/j.landurbplan.2012.02.013
  31. Ministry of Environment. Anti-Artificial Light Pollution Law. 2011.
  32. Nordt A, Klenke R. 2013. Sleepless in Town-Drivers of the Temporal Shift in Dawn Song in Urban European Blackbirds. PLoS One. 8(8): e71476. https://doi.org/10.1371/journal.pone.0071476
  33. Shi K, Yu B, Huang Y, Hu Y, Yin B, Chen Z, Chen L, Wu J. 2014. Evaluating the Ability of Npp-Viirs Nighttime Light Data to Estimate the Gross Domestic Product and the Electric Power Consumption of China at Multiple Scales: A Comparison with Dmsp-Ols Data. Remote Sensing. 6(2): 1705-1724. https://doi.org/10.3390/rs6021705
  34. Sutton P, Roberts D, Elvidge CD, Baugh K. 2001. Census from Heaven: An Estimate of the Global Human Population Using Night-Time Satellite Imagery. International Journal of Remote Sensing. 22(16): 3061-3076. https://doi.org/10.1080/01431160010007015
  35. Voss PR, Long DD, Hammer RB, Friedman S. 2006. County Child Poverty Rates in the Us:A Spatial Regression Approach. Population Research and Policy Review. 25(4): 369-391. https://doi.org/10.1007/s11113-006-9007-4
  36. Xiang W, Tan M. 2017. Changes in Light Pollution and the Causing Factors in China's Protected Areas, 1992-2012. Remote Sensing. 9(10): 1026. https://doi.org/10.3390/rs9101026
  37. Yoo SH, Han SH, Heo J, Sohn HG. 2011. Variable Selection for Estimating Population Using DMSP-OLS Night-Time Image. Korean Journal of Remote Sensing. 27(1): 69-74. https://doi.org/10.7780/kjrs.2011.27.1.069
  38. Zhu L, Cho D, Jeon C, Lee S. 2016. Evaluating Methods for Extracting Built-up Area Using NPP-VIIRS Nighttime Light Data and Local Spatial Statistics. Journal of The Korean Urban Geographical Society. 19(3): 145-163. https://doi.org/10.21189/JKUGS.19.3.11