DOI QR코드

DOI QR Code

Satellite Image Analysis of Convective Cell in the Chuseok Heavy Rain of 21 September 2010

2010년 9월 21일 추석 호우와 관련된 대류 세포의 위성 영상 분석

  • Kwon, Tae-Yong (Department of Atmospheric and Environmental Sciences, Gangneung-Wonju National University) ;
  • Lee, Jeong-Soon (Forecast Research Laboratory, National Institute of Meteorological Research, KMA)
  • 권태영 (강릉원주대학교 대기환경과학과) ;
  • 이정순 (기상청 국립기상연구소 예보연구과)
  • Received : 2013.08.08
  • Accepted : 2013.08.30
  • Published : 2013.08.30

Abstract

On 21 September 2010, one of Chuseok holidays in Korea, localized heavy rainfalls occurred over the midwestern region of the Korean peninsula. In this study MTSAT-2 infrared and water vapor channel imagery are examined to find out some features which are obvious in each stage of the life cycle of convective cell for this heavy rain event. Also the kinematic and thermodynamic features probably associated with them are investigated. The first clouds related with the Chuseok heavy rain are detected as low-level multicell cloud (brightness temperature: $-15{\sim}0^{\circ}C$) in the middle of the Yellow sea at 1630~1900 UTC on 20 Sept., which are probably associated with the convergence at 1000 hPa. Convective cells are initiated in the vicinity of Shantung peninsula at 1933 UTC 20, which have developed around the edge of the dark region in water vapor images. At two times of 0033 and 0433 UTC 21 the merging of two convective cells happens near midwestern coast of the peninsula and then they have developed rapidly. From 0430 to 1000 UTC 21, key features of convective cell include repeated formation of secondary cell, slow horizontal cloud motion, persistence of lower brightness temperature ($-75{\sim}-65^{\circ}C$), and relatively small cloud size (${\leq}-50^{\circ}C$) of about $30,000km^2$. Radar analysis showed that this heavy rain is featured by a narrow line-shaped rainband with locally heavy rainrate (${\geq}50$ mm/hr), which is located in the south-western edge of the convective cell. However there are no distinct features in the associated synoptic-scale dynamic forcing. After 1000 UTC 21 the convective cell grows up quickly in cloud size and then is dissipated. These satellite features may be employed for very short range forecast and nowcasting of mesoscale heavy rain system.

이 연구에서는 MTSAT-2 적외 영상과 수증기 영상을 이용하여 2010년 9월 21일 추석 호우 사례에 대하여 대류운 생애주기의 각 단계에서 나타나는 특징을 조사하였다. 추석 호우와 관련된 최초의 구름은 20일 1630~1900 UTC에 서해 중부 지역에서 관측된 다중 세포의 하층운이다. 이 구름 가운데 일부가 1930 UTC에 산동반도 부근에서 휘도온도 $-45^{\circ}C$ 이하의 대류 세포로 발달한다. 이 때 이 지역은 수증기 영상에서 암역의 가장자리에 위치한다. 대류 세포는 동진하다가 한반도 중서부 해안 부근에서 21일 0030과 0430 UTC에 두 차례의 병합을 거쳐 급격히 발달한다. 이후 21일 0430에서 1000 UTC까지 약 6시간 동안 위성 영상에서 구름의 면적은 상대적으로 작고, 수평 이동속도는 느려졌다. 최저 휘도온도는 약 $-75{\sim}-65^{\circ}C$로 매우 낮게 유지되며, 잘 발달한 부세포가 반복적으로 형성되는 특징을 보인다. 레이더 자료에는 국지적으로 50 mm/hr 이상의 강우율을 보이는 좁은 띠 모양의 강우 밴드가 나타나고 이 밴드는 대류운의 남서쪽 가장자리에 위치한다. 그러나 수치 모델 자료의 종관 규모 역학적 강제항에는 뚜렷한 특징을 찾기 어렵다. 대류 세포의 구름 면적은 21일 1000 UTC 이후 짧은 시간에 급격한 증가를 보이고 뒤이어 소멸한다. 이러한 대류 세포의 발달과 관련된 위성 영상의 특징은 중규모 호우의 초단기 예보와 실시간 예보에 사용될 수 있을 것이다.

Keywords

References

  1. Doswell C.A., III, 1987. The distinction between largescale and mesoscale contribution to severe convection: A case study example, Wea. Forecasting, 2(1):3-16. https://doi.org/10.1175/1520-0434(1987)002<0003:TDBLSA>2.0.CO;2
  2. Doswell C.A., III, H.E. Brooks, and R.A. Maddox, 1996. Flash flood forecasting: An ingredientsbased methodology, Wea. Forecasting, 11(4):560-581. https://doi.org/10.1175/1520-0434(1996)011<0560:FFFAIB>2.0.CO;2
  3. Elmore, K.L., D.J. Stensrud, and K. C. Crawford, 2002. Ensemble cloud model applications to forecasting thunderstorms, J. Appl. Meteorol., 41(4): 363 - 383. https://doi.org/10.1175/1520-0450(2002)041<0363:ECMATF>2.0.CO;2
  4. Georgiev, C.G., 1999. Quantitative relationship between meteosat WV data and positive potential vorticity anomalies: a case study over the Mediterranean, Meteorol. Appl., 6(2): 97-109. https://doi.org/10.1017/S1350482799001024
  5. James, R.P. and P.M. Markowski, 2010. A numerical investigation of the effects of dry air aloft on deep convection, Mon. Wea. Rev., 138(1): 140-161. https://doi.org/10.1175/2009MWR3018.1
  6. Kim, D.-R. and T.-Y. Kwon, 2011. Characteristics of satellite brightness temperature and rainfall intensity over the life cycle of convective cellscase study, Atmosphere, 21(3):273-284(in Korean ith English abstract). https://doi.org/10.14191/ATMOS.2011.21.3.273
  7. Kim, I.-H., T.-Y. Kwon, and D.-R. Kim, 2012. MTSAT satellite image features on the severe storm events in Yeongdong region, Atmosphere, 22(1): 29-45(in Korean with English abstract). https://doi.org/10.14191/Atmos.2012.22.1.029
  8. Kirkpatrick, C., E.W. McCaul Jr., and C. Cohen, 2011. Sensitivity of simulated convective storms to environmental CAPE, Mon. Wea. Rev., 139(11):3514-3532. https://doi.org/10.1175/2011MWR3631.1
  9. Kurz, M., 1994. The role of diagnostic tools in modern weather forecasting, Meteorol Appl., 1(1): 45-67.
  10. Kwon, T.-Y., 2001. The relationship between GMS-5 IR1 brightness temperature and AWS rainfall: a hevy rain event over the mid-western part of Korea for August 5-6, 1998, The Korean Journal of Remote Sensing, 17(1): 15-31(in Korean with English abstract). https://doi.org/10.7780/kjrs.2001.17.1.15
  11. Kwon, T.-Y., J.-S. Kim, and B.-G. Kim, 2013. Comparison of the properties of Yeongdong and Yeongseo heavy rain, Atmosphere, accepted(in Korean with English abstract).
  12. Lovejoy, S., and G.L. Austin, 1979. The source of error in rain amount estimating schemes from GOES visible and IR satellite data, Mon. Wea. Rev., 107(8): 1048-1054. https://doi.org/10.1175/1520-0493(1979)107<1048:TSOEIR>2.0.CO;2
  13. McNulty, R.P., 1995. Severe and convective weather: A Central Region forecasting challenge, Wea. Forecasting, 10(2): 187-202. https://doi.org/10.1175/1520-0434(1995)010<0187:SACWAC>2.0.CO;2
  14. Schultz, D.M., and P.N. Schumacher, 1999. The use and misuse of conditional symmetric instability, Mon. Wea. Rev., 127(12): 2709-2732. https://doi.org/10.1175/1520-0493(1999)127<2709:TUAMOC>2.0.CO;2
  15. Thompson, R.L., R. Edwards, J.A. Hart, K.L. Elmore. and P. Markowski, 2003. Close proximity soundings within supercell environments obtained from the Rapid Update Cycle, Wea. Forecasting, 18(6): 1243 - 1261. https://doi.org/10.1175/1520-0434(2003)018<1243:CPSWSE>2.0.CO;2
  16. Thompson, R.L., C.M. Mead, and R. Edwards, 2007. Effective storm-relative helicity and bulk shear in supercell thunderstorm environments, Wea. Forecasting, 22(1): 102 - 115. https://doi.org/10.1175/WAF969.1
  17. Uccellini, L.W., D. Keyser, K.F. Brill, and C.H. Wash, 1985. The presidents' day cyclone of 18-19 February 1979. Influence of upstream trough amplification and associated tropopause folding on rapid cyclogenesis, Mon. Wea. Rev., 113(6):962-988. https://doi.org/10.1175/1520-0493(1985)113<0962:TPDCOF>2.0.CO;2
  18. Young, M.V., G.A. Monk, and K.A. Browning, 1987. Interpretation of satellite imagery of a rapidly deepening cyclone, Q. J. R. Meteorol. Soc., 113(478): 1089-1115. https://doi.org/10.1002/qj.49711347803

Cited by

  1. Characteristics of Infrared and Water Vapor Imagery for the Heavy Rainfall Occurred in the Korean Peninsula vol.30, pp.4, 2014, https://doi.org/10.7780/kjrs.2014.30.4.5
  2. 국지성 집중호우 감시를 위한 천리안위성 2A호 대류운 전조 탐지 알고리즘 개발 vol.31, pp.5, 2013, https://doi.org/10.14191/atmos.2021.31.5.489
  3. 토픽모델링을 이용한 대한원격탐사학회지의 연구주제 분류 및 연구동향 분석: 자연·환경재해 분야를 중심으로 vol.37, pp.6, 2021, https://doi.org/10.7780/kjrs.2021.37.6.2.9