• 제목/요약/키워드: Infrared Absorber

Search Result 25, Processing Time 0.035 seconds

Plasmon-enhanced Infrared Spectroscopy Based on Metasurface Absorber with Vertical Nanogap

  • Hwang, Inyong;Lee, Jongwon;Jung, Joo-Yun
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.275-279
    • /
    • 2018
  • In this study, we introduce a sensing platform based on a plasmonic metasurface absorber (MA) with a vertical nanogap for the ultrasensitive detection of monolayer molecules. The vertical nanogap of the MA, where the extremely high near-field is uniformly distributed and exposed to the external environment, is formed by an under-cut structure between a metallic cross nanoantenna and the mirror layer. The accessible sensing area and the enhanced near-field of the MA further enhance the sensitivity of surface-enhanced infrared absorption for the target molecule of 1-octadecanethiol. To provide strong coupling between the molecular vibrations and plasmonic resonance, the design parameters of the MA with a vertical nanogap are numerically designed.

Identification of MgII Absorbers in the Quasar Lines of Sight

  • Shim, Hyunjin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.75.3-75.3
    • /
    • 2015
  • Large area infrared surveys are often accompanied with follow-up optical spectroscopic surveys that has a significant legacy value even for other areas of research. Using these spectral database, we have performed a search for MgII absorption lines in the optical spectrum of background quasar. Over the ~4deg2 of AKARI North Ecliptic Pole survey field and Spitzer First Look Survey field, 18 and 16 MgII absorber systems are identified respectively. The redshift range for the background quasars was 1.0<$z_{qso}$<3.4, while the redshift range for the absorber was 0.6<$z_{abs}$<1.6. Galaxies responsible for MgII absorptions are identified in the deep optical images (CFHT r-band), yet the identification still remains ambiguous for 60% of the systems due to the limited image depth and the source crowdedness. The impact parameter ranges 20-60kpc, and the rest-frame equivalent width of MgII absorption ranges $0.7-4{\AA}$. The most critical part in the identification of MgII absorber galaxies is the existence of deep optical images in addition to the high S/N quasar spectrum with R>3000.

  • PDF

Infrared absorbance of the Au-black deposited under nitrogen gas-filled low vacuum condition (질소가스 분위기의 저진공으로 증착된 Au-black의 적외선 흡수도)

  • O, Gwang-Sik;Kim, Dong-Jin;Kim, Jin-Seop;Lee, Jeong-Hui;Lee, Yong-Hyeon;Lee, Jae-Sin;Han, Seok-Yong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.2
    • /
    • pp.13-21
    • /
    • 2000
  • Au-black for the application of the long wavelength infrared absorber has been prepared by evaporating Au under nitrogen gas-filled low vacuum condition. Characteristics of the deposited Au-black were carefully investigated through structural analysis, infrared absorbance measurement, and patterning of the layer, all of which are dependent on the deposition condition. High density of micro-cavity that trapped infrared were obtained, and infrared absorbance in the wavelength range from 3 $\mu\textrm{g}$ to 14 $\mu\textrm{g}$ was found to be about 90% when the Au-black layer was produced under the deposition condition of mass Per area of about 600 $\mu\textrm{g}$/cm$^{2}$ and chamber pressure of above 1 Torr. Photoresist lift-off process could be performed to pattern the Au-black, of which mass per area was below 900 $\mu\textrm{g}$/cm/ sup 2/. In view of absorbance, heat capacity, and pattern formation, the deposition condition of chamber pressure of about 1 Tow and mass per area of about 600$\mu\textrm{g}$/cm$^{2}$ was most adequate for preparing the Au-black as an infrared absorber.

  • PDF

Isolating Vibration in Miniature Linear Cryogenic Cooler with Tuned Vibration Absorber (동조질량 진동흡수기를 이용한 미니 저온쿨러의 진동 절연)

  • Kim, Young-Keun;Kim, Hong-Bae;Kim, Eung-Hyun;Kim, Kyung-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.5
    • /
    • pp.605-609
    • /
    • 2010
  • In modern surveillance equipment, infrared (IR) sensors are essential for detection and observation. The IR sensor is connected to a miniature cryogenic cooler to maintain the temperature at very low levels, i.e., temperatures as low as 77 K. However, the quality of the image captured by the sensor is degraded by the transmission of vibration disturbances from the cooler. Therefore, to maintain high image quality, the compressor vibration and the force transmitted to the sensor have to be mitigated. For the compressor vibration isolating system, a tuned dynamic vibration absorber, combined with a passive isolator, is proposed. A cryogenic compressor bracket and springs are designed to allow the absorber mass to mitigate the vibration jitter in the axial direction. The system design is analyzed and evaluated in terms of the dynamic suppression of the harmonic force at the operating frequency of the cooler.

Variation in IR Absorption Characteristics of a Bolometer by Resistive Hole-array Patterns (저항성 홀배열이 적용된 볼로미터의 적외선 흡수 특성 변화)

  • Kim, Tae Hyun;Oh, Jaesub;Park, Jongcheol;Kim, Hee Yeoun;Lee, Jong-Kwon
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.306-310
    • /
    • 2018
  • In order to develop a highly sensitive infrared sensor, it is necessary to develop techniques for decreasing the rate of heat absorption and the transition of the absorption wavelength to a longer wavelength, both of which can be induced by decreasing the pixel size of the bolometer. Therefore, in this study, $1{\mu}m$ hole-arrays with a subwavelength smaller than the incident infrared wavelength were formed on the amorphous silicon-based microbolometer pixels in the absorber, which consisted of a TiN absorption layer, an a-Si resistance layer and a SiNx membrane support layer. We demonstrated that it is possible to reduce the thermal time constant by 16% relative to the hole-patternless bolometer, and that it is possible to shift the absorption peak to a shorter wavelength as well as increase absorption in the $4-8{\mu}m$ band to compensate for the infrared long-wavelength transition. These results demonstrate the potential for a new approach to improve the performance of high-resolution microbolometers.

Anisotropic Wet Etching of Single Crystal Silicon for Formation of Membrane Structure (멤브레인 구조 제작은 위한 단결정 실리콘의 이방성 습식 식각)

  • 조남인;강창민
    • Journal of the Semiconductor & Display Technology
    • /
    • v.2 no.4
    • /
    • pp.37-40
    • /
    • 2003
  • We have studied micro-machining technologies to fabricate parts and sensors used in the semiconductor equipment. The studies were based on the silicon integrated circuit processes, and composed of the anisotropic etching of single crystal silicon to fabricate a membrane structure for hot and cold junctions in the infrared absorber. KOH and TMAH were used as etching solutions for the anisotropic wet etching for membrane structure formation. The etching characteristic was observed for the each solution, and etching rate was measured depending upon the temperature and concentration of the etching solution. The different characteristics were observed according to pattern directions and etchant concentration. The pattern was made to incline $45^{\circ}$ on the primary flat, and optimum etching property was obtained in the case of 30 wt% and $90^{\circ}C$ of KOH etching solution for the formation of the membrane structure.

  • PDF

Femtosecond Mid-IR Cr:ZnS Laser with Transmitting Graphene-ZnSe Saturable Absorber

  • Won Bae Cho;Ji Eun Bae;Seong Cheol Lee;Nosoung Myoung;Fabian Rotermund
    • Current Optics and Photonics
    • /
    • v.7 no.6
    • /
    • pp.738-744
    • /
    • 2023
  • Graphene-based saturable absorbers (SAs) are widely used as laser mode-lockers at various laser oscillators. In particular, transmission-type graphene-SAs with ultrabroad spectral coverage are typically manufactured on transparent substrates with low nonlinearity to minimize the effects on the oscillators. Here, we developed two types of transmitting graphene SAs based on CaF2 and ZnSe. Using the graphene-SA based on CaF2, a passively mode-locked mid-infrared Cr:ZnS laser delivers relatively long 540 fs pulses with a maximum output power of up to 760 mW. In the negative net cavity dispersion regime, the pulse width was not reduced further by inhomogeneous group delay dispersion (GDD) compensation. In the same laser cavity, we replaced only the graphene-SA based on CaF2 with the SA based on ZnSe. Due to the additional self-phase modulation effect induced by the ZnSe substrate with high nonlinearity, the stably mode-locked Cr:ZnS laser produced Fourier transform-limited ~130 fs near 2,340 nm. In the stable single-pulse operation regime, average output powers up to 635 mW at 234 MHz repetition rates were achieved. To our knowledge, this is the first attempt to achieve shorter pulse widths from a polycrystalline Cr:ZnS laser by utilizing the graphene deposited on the substrate with high nonlinearity.

A Front-side Dry-Etched Thermopile Detector with 3-5 $\mu m$ Infrared Absorber and Its Application to Novel NDIR $CO_2$ Gas Sensors (3-5 $\mu m$ 적외선 흡수체를 가진 전면 건식 식각된 서모파일과 NDIR $CO_2$ 가스 센서의 응용)

  • Yoo, Kum-Pyo;Kim, Si-Dong;Choi, Woo-Seok;Singh, V.R.;Min, Nam-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1470-1471
    • /
    • 2008
  • We present a front-side micromachined thermopile with high sensitivity in the 3-5${\mu}m$ window, and discuss its application to a novel non-dispersive infrared (NDIR) $CO_2$ gas sensor with a light source emitting collimated light. The micromachined thermopile shows a measured sensitivity of 30 mV/W and a $D^*$ of $0.3{\times}10^8cm^{\surd}Hz/W$. Using this newly fabricated thermopile, we also have successfully developed a small, sensitive NDIR $CO_2$ detector module for accurate air quality monitoring systems in energy-saving building and automotive applications. The novel sample cavity comprising specular reflectors around the light bulb is configured to uniformly emit collimated light into the entrance aperture of the cavity in order to enhance the sensitivity of NDIR $CO_2$ detector.

  • PDF

Analysis of Subwavelength Metal Hole Array Structure for the Enhancement of Quantum Dot Infrared Photodetectors

  • Ha, Jae-Du;Hwang, Jeong-U;Gang, Sang-U;No, Sam-Gyu;Lee, Sang-Jun;Kim, Jong-Su;Krishna, Sanjay;Urbas, Augustine;Ku, Zahyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.334-334
    • /
    • 2013
  • In the past decade, the infrared detectors based on intersubband transition in quantum dots (QDs) have attracted much attention due to lower dark currents and increased lifetimes, which are in turn due a three-dimensional confinement and a reduction of scattering, respectively. In parallel, focal plane array development for infrared imaging has proceeded from the first to third generations (linear arrays, 2D arrays for staring systems, and large format with enhanced capabilities, respectively). For a step further towards the next generation of FPAs, it is envisioned that a two-dimensional metal hole array (2D-MHA) structures will improve the FPA structure by enhancing the coupling to photodetectors via local field engineering, and will enable wavelength filtering. In regard to the improved performance at certain wavelengths, it is worth pointing out the structural difference between previous 2D-MHA integrated front-illuminated single pixel devices and back-illuminated devices. Apart from the pixel linear dimension, it is a distinct difference that there is a metal cladding (composed of a number of metals for ohmic contact and the read-out integrated circuit hybridization) in the FPA between the heavily doped gallium arsenide used as the contact layer and the ROIC; on the contrary, the front-illuminated single pixel device consists of two heavily doped contact layers separated by the QD-absorber on a semi-infinite GaAs substrate. This paper is focused on analyzing the impact of a two dimensional metal hole array structure integrated to the back-illuminated quantum dots-in-a-well (DWELL) infrared photodetectors. The metal hole array consisting of subwavelength-circular holes penetrating gold layer (2DAu-CHA) provides the enhanced responsivity of DWELL infrared photodetector at certain wavelengths. The performance of 2D-Au-CHA is investigated by calculating the absorption of active layer in the DWELL structure using a finite integration technique. Simulation results show the enhanced electric fields (thereby increasing the absorption in the active layer) resulting from a surface plasmon, a guided mode, and Fabry-Perot resonances. Simulation method accomplished in this paper provides a generalized approach to optimize the design of any type of couplers integrated to infrared photodetectors.

  • PDF

Cross Talk among Pyroelectric Sensitive Elements in Thermal Imaging Device

  • Bang Jung Ho;Yoon Yung Sup
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.780-783
    • /
    • 2004
  • The two-dimensional modeling of the non-stationary thermal state and voltage responsivity of the sensitive elements usually used in solid-state pyroelectric focal plane arrays are presented. Temperature distributions under periodical thermal excitation and the response of the thermal imaging device, which is composed of the pyroelectric sensitive elements mounted on a single silicon substrate, are numerically calculated. The sensitive element consists of a covering metal layer, infrared polymer absorber, front metal contact, sensitive pyroelectric element, the interconnecting column and the bulk silicon readout. The results of the numerical modeling show that the thermal crosstalk between sensitive elements to be critical especially at low frequency (f < 10Hz) of periodically modulated light. It is also shown that the use of our models gives the possibility to improve the design, operating regimes and sensitivity of the device.

  • PDF