• Title/Summary/Keyword: Infrared: imaging

Search Result 767, Processing Time 0.027 seconds

Electronics Design of the NISS onboard NEXTSat-1

  • Lee, Dae-Hee
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.55.2-55.2
    • /
    • 2015
  • NISS is a unique spaceborne imaging spectrometer (R = 20) onboard the Korea's next micro-satellite NEXTSat-1 to investigate the star formation history of Universe in near infrared wavelength region (0.9 - 3.8 um), with a customized H1RG IR sensor(Jeong 2014). In this paper, we will introduce the compact electronics system (Fig. 1) as well as the novel readout method to reduce the 1/f noise for NISS.

  • PDF

Brain Computer Interfacing: A Multi-Modal Perspective

  • Fazli, Siamac;Lee, Seong-Whan
    • Journal of Computing Science and Engineering
    • /
    • v.7 no.2
    • /
    • pp.132-138
    • /
    • 2013
  • Multi-modal techniques have received increasing interest in the neuroscientific and brain computer interface (BCI) communities in recent times. Two aspects of multi-modal imaging for BCI will be reviewed. First, the use of recordings of multiple subjects to help find subject-independent BCI classifiers is considered. Then, multi-modal neuroimaging methods involving combined electroencephalogram and near-infrared spectroscopy measurements are discussed, which can help achieve enhanced and robust BCI performance.

Recent Trends in Human Motion Detection Technology and Flexible/stretchable Physical Sensors: A Review

  • Park, Inkyu
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.391-396
    • /
    • 2017
  • Human body motion detection is important in several industry sectors, such as entertainment, healthcare, rehabilitation, and so on. In this paper, we first discuss commercial human motion detection technologies (optical markers, MEMS acceleration sensors, infrared imaging, etc.) and then explain recent advances in the development of flexible and stretchable strain sensors for human motion detection. In particular, flexible and stretchable strain sensors that are fabricated using carbon nanotubes, silver nanowires, graphene, and other materials are reviewed.

AKARI Observation of the North Ecliptic Pole (NEP) Supercluster at z=0.087

  • Ko, Jong-Wan;Im, Myung-Shin;AKARINEP-Wideteam, AKARINEP-Wideteam
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.74.2-74.2
    • /
    • 2010
  • We present a multi-wavelength study of a supercluster in the NEP region at z=0.087, using AKARI (Infrared space telescope) NEP-Wide (5.8 deg2) survey which has obtained an unique IR imaging dataset with contiguous wavelength coverage from 2 to $24{\mu}m$, overcoming the Spitzer limitation of imaging capability at $10-20{\mu}m$. The NEP-Wide survey is also covered in other wavelength such as X-ray, Radio, GALEX UV in the archive, optical (BRI from Maidanak 1.5m and CFHT's MegaPrime), and NIR imaging data (JH from KPNO 2.1m), with nearly 1900 optical spectra, mostly obtained by our group using MMT/Hectospec and WIYN/Hydra. Armed with the multiwavelength datasets, we investigate the connection between IR properties of galaxies and their environments as a tool to understand the evolution of galaxies in a supercluster environment. Specific attention will be given to MIR emission which can trace star formation activities and passive phases right after post-starbursts, and its relation to other wavelength data.

  • PDF

Thermal Infrared Image Analysis for Breast Cancer Detection

  • Min, Sedong;Heo, Jiyoung;Kong, Youngsun;Nam, Yunyoung;Ley, Preap;Jung, Bong-Keun;Oh, Dongik;Shin, Wonhan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.2
    • /
    • pp.1134-1147
    • /
    • 2017
  • With the rise in popularity of photographic and video cameras, an increasing number of fields are now using thermal imaging cameras. One such application is in the diagnosis of breast cancer, as thermal imaging provides a low-cost and noninvasive method. Thermal imaging is particularly safe for pregnant women, and those with large, dense, or sensitive breasts. In addition, excessive doses of radiation, which may be used in traditional methods of breast cancer detection, can increase the risk of cancer. This paper presents one method of breast cancer detection. Breast images were taken using a thermal camera, with preliminary experiments conducted on Cambodian women. Then the experimental results were analyzed and compared using Shannon entropy and logistic regression.

Design and Manufacture of Ultra-Precision Al Flat Mirror Using Thermal Image Optics (열영상 광학계용 초정밀 Al 평면 미러의 설계 및 제작)

  • Kim, Dae-Jung;Choi, Cheol-Ho;Park, Yong-Pil;Gu, Hal-Bon;Kim, Shang-Suk;Kim, Joung-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05b
    • /
    • pp.136-139
    • /
    • 2003
  • Thermal imaging system is electro-optical imaging device which can make visible the difference of infrared energy naturally emitted by objects. It is acquire the same images at any time of the day or night. There it has been readily available to the night observation such as fire control systems. In this study, we are manufacturing thermal image Al flat mirror. The surface roughness 3.539nm Ra and power 0.382 fringe(at 632.8nm), irregularity 0.835 fringe(at 632.8nm) for form waviness of thermal image Al flat mirror are very satisfied. The results will be reflected for development of the ultra precision application. And a brief review of Ultra-precision system in the field of Ultra-precision at Korea photonics technology institute (KOPTI) is present in this paper.

  • PDF

Molding and Evaluation of Ultra-Precision Chalcogenide-Glass Lens for Thermal Imaging Camera Using Thermal Deformation Compensation (열변형 보정을 통한 열화상카메라용 초정밀 칼코지나이드 유리렌즈 몰드성형 및 특성 평가)

  • Cha, Du Hwan;Kim, Jeong-Ho;Kim, Hye-Jeong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.2
    • /
    • pp.91-96
    • /
    • 2014
  • Aspheric lenses used in the thermal imaging are typically fabricated using expensive single-crystal materials (Ge and ZnS, etc.) by the costly single point diamond turning (SPDT) process. As a potential solution to reduce cost, compression molding method using chalcogenide glass has been attracted to fabricate IR optic. Thermal deformation of a molded lens should be compensated to fabricate chalcogenide aspheric lens with form accuracy of the submicron-order. The thermal deformation phenomenon of molded lens was analyzed ant then compensation using mold iteration process is followed to fabricate the high accuracy optic. Consequently, it is obvious that compensation of thermal deformation is critical and useful enough to be adopted to fabricate the lens by molding method.

Analysis and Comparison of Rock Spectroscopic Information Using Drone-Based Hyperspectral Sensor

  • Lee, So-Jin;Jeong, Gyo-Cheol;Kim, Jong-Tae
    • The Journal of Engineering Geology
    • /
    • v.31 no.4
    • /
    • pp.479-492
    • /
    • 2021
  • We conducted a fundamental study on geological and rock detection via drone-based hyperspectral imaging on various types of small rock samples and interpreted the obtained information to compare and classify rocks. Further, we performed hyperspectral imaging on ten rocks, and compared the peak data value and reflectance of rocks. Results showed a difference in the reflectance and data value of the rocks, indicating that the rock colors and minerals vary or the reflectance is different owing to the luster of the surface. Among the rocks, limestone used for hyperspectral imaging is grayish white, inverted rock contains various sizes and colors in the dark red matrix, and granite comprises colorless minerals, such as white, black, gray, and colored minerals, resulting in a difference in reflectance. The reflectance of the visible ray range in ten rocks was 16.00~85.78%, in the near infrared ray range, the average reflectance was 23.94~86.43%, the lowest in basalt and highest in marble in both cases. This is because of the pores in basalt, which caused the difference in reflectance.

Cetyl Trimethyl Ammonium Bromide-coated Nickel Ferrite Nanoparticles for Magnetic Hyperthermia and T2 Contrast Agents in Magnetic Resonance Imaging

  • Lee, Da-Aemm;Bae, Hongsubm;Rhee, Ilsum
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1334-1339
    • /
    • 2018
  • Spherical nickel ferrite nanoparticles were synthesized using the thermal decomposition method and coated with cetyl trimethyl ammonium bromide (CTAB) after the synthesis. Transmission electron microscopy images showed that the average diameter of the particles was 9.40 nm. The status of the CTAB-coating on the surface of the particles was checked using Fourier-transform infrared spectroscopy. Their hysteresis curve showed that the particles exhibited a superparamagnetic behavior. The $T_1$ and the $T_2$ relaxations of the nuclear spins were observed in aqueous solutions of the particles with different particles concentrations by using a magnetic resonance imaging (MRI) scanner, which showed that the $T_1$ and the $T_2$ relaxivities of the particles in water were $0.57mM^{-1}{\cdot}s^{-1}$ and $10.42mM^{-1}{\cdot}s^{-1}$, respectively. In addition, using an induction heating system, we evaluated their potentials for magnetic hyperthermia applications. The aqueous solution of the particles with a moderate concentration (smaller than 6.5 mg/mL) showed a saturation temperature larger than the hyperthermia target temperature of $42^{\circ}C$. These findings show that the CTAB-coated nickel ferrite particles are suitable for applications as $T_2$ contrast agents in MRI and heat generators in magnetic hyperthermia.