Browse > Article
http://dx.doi.org/10.9720/kseg.2021.4.479

Analysis and Comparison of Rock Spectroscopic Information Using Drone-Based Hyperspectral Sensor  

Lee, So-Jin (Corporate Research Institute, Nature and Tech Inc.)
Jeong, Gyo-Cheol (Department of Earth and Environmental Sciences, Andong National University)
Kim, Jong-Tae (Corporate Research Institute, Nature and Tech Inc.)
Publication Information
The Journal of Engineering Geology / v.31, no.4, 2021 , pp. 479-492 More about this Journal
Abstract
We conducted a fundamental study on geological and rock detection via drone-based hyperspectral imaging on various types of small rock samples and interpreted the obtained information to compare and classify rocks. Further, we performed hyperspectral imaging on ten rocks, and compared the peak data value and reflectance of rocks. Results showed a difference in the reflectance and data value of the rocks, indicating that the rock colors and minerals vary or the reflectance is different owing to the luster of the surface. Among the rocks, limestone used for hyperspectral imaging is grayish white, inverted rock contains various sizes and colors in the dark red matrix, and granite comprises colorless minerals, such as white, black, gray, and colored minerals, resulting in a difference in reflectance. The reflectance of the visible ray range in ten rocks was 16.00~85.78%, in the near infrared ray range, the average reflectance was 23.94~86.43%, the lowest in basalt and highest in marble in both cases. This is because of the pores in basalt, which caused the difference in reflectance.
Keywords
hyperspectral information; mineral; reflectance; rock detection; visible ray range;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Longhi, I., Sgavetti, M., Chiari, R., Mazzoli, C., 2001, Spectral analysis and classification of metamorphic rocks from laboratory reflectance spectra in the 0.4-2.5 ㎛ interval: A tool for hyperspectral data interpretation, International Journal of Remote Sensing, 22(18), 3763-3782.   DOI
2 Mhanolakis, D., Marden, D., Shaw, G., 2003, Hyperspectral image processing for automatic target detection applications, Lincoln Laboratory Journal, 14(1), 79-116.
3 Krupnik, D., Khan, S.D., 2019, Close-range, ground-based hyperspectral imaging for mining applications at various scales: Review and case studies, Earth-Science Reviews, 198, 102952.   DOI
4 Feng, J., Rogge, D., Rivard, B., 2018, Comparison of lithological mapping results from airborne Hyperspectral VNIR-SWIR, LWIR and combined data, International Journal of Applied Earth Observation and Geoinformation, 64, 340-353.   DOI
5 Kim, S.H., Kim, T.H., Hong, C.H., 2010, A study on classification of bed rock over Antarctic Terra nova bay using hyperspectral image, Journal of Korea Spatial Information Society, 18(5), 55-61 (in Korean with English abstract).
6 Graham, G.E., Kokaly, R.F., Kelley, K.D., Hoefen, T.M., Johnson, M.R., Hubbard, B.E., 2018, Application of imaging spectroscopy for mineral exploration in Alaska: A study over porphyry Cu deposits in the Eastern Alaska Range, Economic Geology, 113(2), 489-510.   DOI
7 Kumar, C., Chatterjee, S., Oommen, T., Guha, A., 2020, Automated lithological mapping by integrating spectral enhancement techniques and machine learning algorithms using AVIRIS-NG hyperspectral data in gold-bearing granite-greenstone rocks in Hutti, India, International Journal of Applied Earth Observation and Geoinformation, 86, 102006.   DOI
8 Laakso, K., Rivard, B., Peter, J.M., White, H.P., Maloley, M., Harris, J., Rogge, D., 2015, Application of airborne, laboratory, and field hyperspectral methods to mineral exploration in the Canadian Arctic: Recognition and characterization of volcanogenic massive sulfide-associated hydrothermal alteration in the Izok lake deposit area, Nunavut, Canada, Economic Geology, 110(4), 925-941.   DOI
9 Gowen, A., O'Donnell, C., Cullen, P., Downey, G., Frias, J., 2007, Hyperspectral imaging - an emerging process analytical tool for food quality and safety control, Trends in Food Science & Technology, 18(12), 590-598.   DOI
10 Heo, A., Choi, S., Lee, J.H., Kim, T., Park, D.J., 2010, Optical system design and image processing for hyperspectral imaging systems, Journal of the Korea Institute of Military Science and Technology, 13(2), 328-335 (in Korean with English abstract).
11 Herold, M., Gardner, M.E., Roberts, D.A., 2003, Spectral resolution requirements for mapping urban areas, IEEE Transactions on Geoscience and Remote Sensing, 41(9), 1907-1919.   DOI
12 Koerting, F., Rogass, C., Kaempf, H., Lubitz, C., Harms, U., Schudack, M., Kokaly, R., Mielke, C., Boesche, N., Altenberger, U., 2015, Drill core mineral analysis by means of the hyperspectral imaging spectrometer HySpex, XRD and ASD in proximity of the Mytina Maar, Czech Republic, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-1-W5, 417-424.   DOI
13 Akbari, H., Kosugi, Y., Kojima, K., Tanaka, N., 2010, Detection and analysis of the intestinal ischemia using visible and invisible hyperspectral imaging, IEEE Transactions on Biomedical Engineering, 57(8), 2011-2017.   DOI
14 Benediktsson, J.A., Palmason, J.A., Sveinsson, J.R., 2005, Classification of hyperspectral data from urban areas based on extended morphological profiles, IEEE Transactions on Geoscience and Remote Sensing, 43(3), 480-491.   DOI
15 Boesche, N., Rogass, C., Lubitz, C., Brell, M., Herrmann, S., Mielke, C., Tonn, S., Appelt, O., Altenberger, U., Kaufmann, H., 2015, Hyperspectral REE (rare earth element) mapping of outcrops-applications for neodymium detection, Remote Sensing, 7(5), 5160-5186.   DOI
16 Brown, D.J., Shepherd, K.D., Walsh, M.G., Dewayne Mays, M.D., Reinsch, T.G., 2006, Global soil characterization with VNIR diffuse reflectance spectroscopy, Geoderma, 132(3-4), 273-290.   DOI
17 Goetz, A.F.H., 1991, Imaging spectrometry for studying earth, air, fire and water, EARSeL, Advances in Remote Sensing, 1(1), 3-15.
18 Chattoraj, S.L., Prasad, G., Sharma, R.U., Champati Ray, P.K., van der Meer, F.D., Guha, A., Pour, A.B., 2020, Integration of remote sensing, gravity and geochemical data for exploration of Cu-mineralization in Alwar basin, Rajasthan, India, International Journal of Applied Earth Observation and Geoinformation, 91, 102-162.
19 Choe, E., van der Meer, F., van Ruitenbeek, F., van der Werff, H., De Smeth, B., Kim, K.W., 2008, Mapping of heavy metal pollution in stream sediments using combined geochemistry, field spectroscopy, and hyperspectral remote sensing: A case study of the Rodalquilar mining area, SE Spain, Remote Sensing of Environment, 112(7), 3222-3233.   DOI
20 Crosta, A.P., Sabine, C., Taranik, J.V., 1998, Hydrothermal alteration mapping at Bodie, California, using AVIRIS hyperspectral data, Remote Sensing of Environment, 65(3), 309-319.   DOI
21 Brewer, L.N., Ohlhausen, J.A., Kotula, P.G., Michael, J.R., 2008, Forensic analysis of bioagents by X-ray and TOF-SIMS hyperspectral imaging, Forensic Science International, 179(2-3), 98-106.   DOI
22 Lowe, A., Harrison, N., French, A.P., 2017, Hyperspectral image analysis techniques for the detection and classification of the early onset of plant disease and stress, Plant Methods, 13, 80.   DOI
23 Manolakis, D., Shaw, G., 2002, Detection algorithms for hyperspectral imaging applications, IEEE Signal Processing Magazine, 19(1), 29-43.   DOI
24 Rogass, C., Koerting, F.M., Mielke, C., Brell, M., Boesche, N.K., Bade, M., Hohmann, C., 2017, Translational imaging spectroscopy for proximal sensing, Sensors, 17(8), 1857.   DOI
25 Kirkland, L., Herr, K., Keim, E., Adams, P., Salisbury, J., Hackwell, J., Treiman, A., 2002, First use of an airborne thermal infrared hyperspectral scanner for compositional mapping, Remote Sensing of Environment, 80(3), 447-459.   DOI
26 Krupnik, D., Khan, S.D., 2020, High-resolution hyperspectral mineral mapping: Case studies in the Edwards Limestone, Texas, USA and sulfide-rich quartz veins from the Ladakh Batholith, Northern Pakistan, Minerals, 10(11), 967.   DOI
27 Mars, J.C., Crowley, J.K., 2003, Mapping mine wastes and analysing areas affected by selenium-rich water runoff in southeast Idaho using AVIRIS imagery and digital elevation data, Remote Sensing of Environment, 84(3), 422-436.   DOI
28 Nocita, M., Stevens, A., Noon, C., van Wesemael, B., 2013, Prediction of soil organic carbon for different levels of soil moisture using vis-NIR spectroscopy, Geoderma, 199, 37-42.   DOI
29 Rasti, B., Scheunders, P., Ghamisi, P., Licciardi, G., Chanussot, J., 2018, Noise reduction in hyperspectral imagery: Overview and application, Remote Sensing, 10(3), 482.   DOI
30 Rogge, D., Rivard, B., Segl, K., Grant, B., Feng, J., 2014, Mapping of NiCu-PGE ore hosting ultramafic rocks using airborne and simulated EnMAP hyperspectral imagery, Nunavik, Canada, Remote Sensing of Environment, 152, 302-317.   DOI
31 Shaw, G.A., Burke, H.K., 2003, Spectral imaging for remote sensing, Lincoln Laboratory Journal, 14(1), 3-28.
32 Srodon, J., Drits, V.A., McCarty, D.K., Hsieh, J.C., Eberl, D.D., 2001, Quantitative X-ray diffraction analysis of clay-bearing rocks from random preparations, Clays and Clay Minerals, 49(6), 514-528.   DOI
33 Thompson, D.R., Bornstein, B.J., Chien, S.A., Schaffer, S., Tran, D., Bue, B.D., Castano, R., Gleeson, D.F., Noell, A., 2013, Autonomous spectral discovery and mapping onboard the EO-1 spacecraft, IEEE Transactions on Geoscience and Remote Sensing, 51(6), 3567-3579.   DOI
34 van der Meer, F., 2003, Bayesian inversion of imaging spectrometer data using a fuzzy geological outcrop model, International Journal of Remote Sensing, 24(22), 4301-4310.   DOI
35 van der Meer, F., Kato, V., 2002, Developing a schematic petrogenetic transect for a contact aureole using field spectrometry; A case study in los Santos, Salamanca Province, Central-Western Spain, International Journal Remote Sensing, 23(23), 5087-5094.   DOI